ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. A discrete Lawson correspondence

66   0   0.0 ( 0 )
 نشر من قبل Alexander I. Bobenko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with the smooth case.



قيم البحث

اقرأ أيضاً

We discuss discretization of Koenigs nets (conjugate nets with equal Laplace invariants) and of isothermic surfaces. Our discretization is based on the notion of dual quadrilaterals: two planar quadrilaterals are called dual, if their corresponding s ides are parallel, and their non-corresponding diagonals are parallel. Discrete Koenigs nets are defined as nets with planar quadrilaterals admitting dual nets. Several novel geometric properties of discrete Koenigs nets are found; in particular, two-dimensional discrete Koenigs nets can be characterized by co-planarity of the intersection points of diagonals of elementary quadrilaterals adjacent to any vertex; this characterization is invariant with respect to projective transformations. Discrete isothermic nets are defined as circular Koenigs nets. This is a new geometric characterization of discrete isothermic surfaces introduced previously as circular nets with factorized cross-ratios.
We establish curvature estimates and a convexity result for mean convex properly embedded $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^3$, i.e., $varphi$-minimal surfaces when $varphi$ depends only on the third coordinate of $mathbb{R}^3$. Le d by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana, for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in $mathbb{R}^3$, we use a compactness argument to provide curvature estimates for a family of mean convex $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^{3}$. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded $[varphi,vec{e}_{3}]$-minimal surface in $mathbb{R}^{3}$ with non positive mean curvature when the growth at infinity of $varphi$ is at most quadratic.
We prove a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of $mathbb{R}^{3}_{raisepunct{.}}$ We also show that any minimal hypersurface immersed with bou nded curvature in $Mtimes R_+$ equals some $Mtimes {s}$ provided $M$ is a complete, recurrent $n$-dimensional Riemannian manifold with $text{Ric}_M geq 0$ and whose sectional curvatures are bounded from above. For $H$-surfaces we prove that a stochastically complete surface $M$ can not be in the mean convex side of a $H$-surface $N$ embedded in $R^3$ with bounded curvature if $sup vert H_{_M}vert < H$, or ${rm dist}(M,N)=0$ when $sup vert H_{_M}vert = H$. Finally, a maximum principle at infinity is shown assuming $M$ has non-empty boundary.
In this paper we are interested in defining affine structures on discrete quadrangular surfaces of the affine three-space. We introduce, in a constructive way, two classes of such surfaces, called respectively indefinite and definite surfaces. The un derlying meshes for indefinite surfaces are asymptotic nets satisfying a non-degeneracy condition, while the underlying meshes for definite surfaces are non-degenerate conjugate nets satisfying a certain natural condition. In both cases we associate to any of these nets several discrete affine invariant quantities: a metric, a normal and a co-normal vector fields, and a mean curvature. Moreover, we derive structural and compatibility equations which are shown to be necessary and sufficient conditions for the existence of a discrete quadrangular surface with a given affine structure.
124 - Marcos Craizer 2020
Asymptotic net is an important concept in discrete differential geometry. In this paper, we show that we can associate affine discrete geometric concepts to an arbitrary non-degenerate asymptotic net. These concepts include discrete affine area, mean curvature, normal and co-normal vector fields and cubic form, and they are related by structural and compatibility equations. We consider also the particular cases of affine minimal surfaces and affine spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا