ﻻ يوجد ملخص باللغة العربية
Recently, it has been determined that there are 242 Wilf classes of triples of 4-letter permutation patterns by showing that there are 32 non-singleton Wilf classes. Moreover, the generating function for each triple lying in a non-singleton Wilf class has been explicitly determined. In this paper, toward the goal of enumerating avoiders for the singleton Wilf classes, we obtain the generating function for all but one of the triples containing 1324. (The exceptional triple is conjectured to be intractable.) Our methods are both combinatorial and analytic, including generating trees, recurrence relations, and decompositions by left-right maxima. Sometimes this leads to an algebraic equation for the generating function, sometimes to a functional equation or a multi-index recurrence amenable to the kernel method.
We determine all 242 Wilf classes of triples of 4-letter patterns by showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns and after computer calculation of initial terms, the problem red
Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through exte
We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed e
Building on previous work by the present authors [Proc. London Math. Soc. 119(2):358--378, 2019], we obtain a precise asymptotic estimate for the number $g_n$ of labelled 4-regular planar graphs. Our estimate is of the form $g_n sim gcdot n^{-7/2} rh
We show that permutations of size $n$ avoiding both of the dashed patterns 32-41 and 41-32 are equinumerous with indecomposable set partitions of size $n+1$, and deduce a related result.