ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spin-Reorientation Transition in TmFeO3

71   0   0.0 ( 0 )
 نشر من قبل Urs Staub
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray magnetic circular and linear dichroism (XMCD and XMLD) have been used to investigate the Fe magnetic response during the spin reorientation transition (SRT) in TmFeO3. These experiments are complemented with resonant magnetic diffraction experiments at the Tm M5 edge to study simultaneously the induced magnetic order in the Tm 4f shell and the behavior of the Tm orbitals through the SRT. Comparing the Fe XMLD results with neutron diffraction and magnetization measurements on the same sample indicate that the SRT has an enhanced temperature range in the near surface region. This view is supported by the resonant soft x-ray diffraction results at the Tm M5 edge. These find an induced magnetic moment on the Tm sites, which is well-described by a dipolar mean field model originating from the Fe moments. Even though such a model can describe the 4f response in the experiments, it is insufficient to describe the SRT even when considering a change in the 4f anisotropy. Moreover, the results of the Fe XMCD are indicative of a decoupling of spin canting and antiferromagnetic spin rotation in the near surface regime close to the SRT, which remains to be understood.

قيم البحث

اقرأ أيضاً

We show how complex modulated order can spontaneously emerge when magnetic interactions compete in a metal with polar lattice distortions. Combining neutron and resonant x-ray scattering with symmetry analysis, we reveal that the spin reorientation i n Ca$_3$Ru$_2$O$_7$ is mediated by a magnetic cycloid whose eccentricity evolves smoothly but rapidly with temperature. We find the cycloid to be highly sensitive to magnetic fields, which appear to continuously generate higher harmonic modulations. Our results provide a unified picture of the rich magnetic phases of this correlated, multi-band polar metal.
In this paper we present a comprehensive study of magnetic dynamics in the rare-earth orthoferrite YbFeO$_3$ at temperatures below and above the spin-reorientation (SR) transition $T_{mathrm{SR}}=7.6$ K, in magnetic fields applied along the $a, b$ an d $c$ axes. Using single-crystal inelastic neutron scattering, we observed that the spectrum of magnetic excitations consists of two collective modes well separated in energy: 3D gapped magnons with a bandwidth of $sim$60 meV, associated with the antiferromagnetically (AFM) ordered Fe subsystem, and quasi-1D AFM fluctuations of $sim$1 meV within the Yb subsystem, with no hybridization of those modes. The spin dynamics of the Fe subsystem changes very little through the SR transition and could be well described in the frame of semiclassical linear spin-wave theory. On the other hand, the rotation of the net moment of the Fe subsystem at $T_{mathrm{SR}}$ drastically changes the excitation spectrum of the Yb subsystem, inducing the transition between two regimes with magnon and spinon-like fluctuations. At $T < T_{mathrm{SR}}$, the Yb spin chains have a well defined field-induced ferromagnetic (FM) ground state, and the spectrum consists of a sharp single-magnon mode, a two-magnon bound state, and a two-magnon continuum, whereas at $T > T_{mathrm{SR}}$ only a gapped broad spinon-like continuum dominates the spectrum. In this work we show that a weak quasi-1D coupling within the Yb subsystem $J_text{Yb-Yb}$, mainly neglected in previous studies, creates unusual quantum spin dynamics on the low energy scales. The results of our work may stimulate further experimental search for similar compounds with several magnetic subsystems and energy scales, where low-energy fluctuations and underlying physics could be hidden by a dominating interaction.
Polar distortions in solids give rise to the well-known functionality of switchable macroscopic polarisation in ferroelectrics and, when combined with strong spin-orbit coupling, can mediate giant spin splittings of electronic states. While typically found in insulators, ferroelectric-like distortions can remain robust against increasing itineracy, giving rise to so-called polar metals. Here, we investigate the temperature-dependent electronic structure of Ca$_3$Ru$_2$O$_7$, a correlated oxide metal in which octahedral tilts and rotations combine to mediate pronounced polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridisation mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridisation is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations, and revealing a new route to control magnetic ordering in solids.
322 - F. Yen 2005
GdFe3(BO3)4 exhibits a structural phase transition at 156 K, antiferromagnetic order of the Fe3+ moments at 36 K followed by a spin reorientation phase transition at 9 K. The reorientation phase transition is studied through dielectric, magnetic and heat capacity measurements under the application of external magnetic fields of up to 7 kOe. The dielectric constant indicates the existence of two distinct anomalies at T_SR = 9 K that separate in temperature under external magnetic fields. The spin rotation phase transition is proven to be of the first-order nature through the magnetic analogue of the Clausius-Clapeyron equation. Magneto-dielectric effect of up to 1% is observed at 8 K and 7 kOe. The uniaxial magnetocaloric effect along the c axis is observed below the spin reorientation phase transition of 9 K.
Nd2Fe14B magnetic nanoparticles have been successfully produced using a surfactant-assisted ball milling technique. The nanoparticles with different size about 6, 20 and 300 nm were obtained by a size-selection process. Spin-reorientation transition temperature of the NdFeB nanoparticles was then determined by measuring the temperature dependence of DC and AC magnetic susceptibility. It was found that the spin-reorientation transition temperature (Tsr) of the nanoparticles is strongly size dependent, i.e., Tsr of the 300 nm particles is lower than that of raw materials and a significant decrease was observed in the 20 nm particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا