ﻻ يوجد ملخص باللغة العربية
Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation
Quantum annealing is a practical approach to execute the native instruction set of the adiabatic quantum computation model. The key of running adiabatic algorithms is to maintain a high success probability of evolving the system into the ground state
In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising Hamiltonian encodes the solution to the compu
We have developed a framework to convert an arbitrary integer factorization problem to an executable Ising model by first writing it as an optimization function and then transforming the k-bit coupling ($kgeq 3$) terms to quadratic terms using ancill
Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical counterparts. Semi-supervised lear