ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictive Simulations for Tuning Electronic and Optical Properties of SubPc Derivatives

80   0   0.0 ( 0 )
 نشر من قبل Michael Waters
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Boron subphthalocyanine chloride is an electron donor material used in small molecule organic photovoltaics with an unusually large molecular dipole moment. Using first-principles calculations, we investigate enhancing the electronic and optical properties of boron subphthalocyanine chloride, by substituting the boron and chlorine atoms with other trivalent and halogen atoms in order to modify the molecular dipole moment. Gas phase molecular structures and properties are predicted with hybrid functionals. Using positions and orientations of the known compounds as the starting coordinates for these molecules, stable crystalline structures are derived following a procedure that involves perturbation and accurate total energy minimization. Electronic structure and photonic properties of the predicted crystals are computed using the GW method and the Bethe-Salpeter equation, respectively. Finally, a simple transport model is use to demonstrate the importance of molecular dipole moments on device performance.

قيم البحث

اقرأ أيضاً

The peculiar electronic and optical properties of covalent organic frameworks (COFs) are largely determined by protonation, a ubiquitous phenomenon in the solution environment in which they are synthesized. The resulting effects are non-trivial and a ppear to be crucial for the intriguing functionalities of these materials. In the quantum-mechanical framework of time-dependent density-functional theory, we investigate from first principles the impact of protonation of triazine and amino groups in molecular building blocks of COFs in water solution. In all considered cases, we find that proton uptake leads to a gap reduction and to a reorganization of the electronic structure, driven by the presence of the proton and by the electrostatic attraction between the positively charged protonated species and the negative counterion in its vicinity. Structural distortions induced by protonation are found to play only a minor role. The interplay between band-gap renormalization and exciton binding strength determines the energy of the absorption onsets: when the former prevails on the latter, a red-shift is observed. Furthermore, the spatial and energetic rearrangement of the molecular orbitals upon protonation induces a splitting of the lowest-energy peaks and a decrease of their oscillator strength in comparison with the pristine counterparts. Our results offer quantitative and microscopic insight into the role of protonation on the electronic and optical properties of triazine derivatives as building blocks of COFs. As such, they contribute to rationalize the relationships between structure, property, and functionality of these materials.
Here we demonstrate that significant progress in this area may be achieved by introducing structural elements that form hydrogen bonds with environment. Considering several examples of hybrid framework materials with different structural ordering con taining protonated sulfonium cation H3S+ that forms strong hydrogen bonds with electronegative halogen anions (Cl-, F-), we found that hydrogen bonding increases the structural stability of the material and may be used for tuning electronic states near the bandgap. We suggest that such a behavior has a universal character and should be observed in hybrid inorganic-organic framework materials containing protonated cations. This effect may serve as a viable route for optoelectronic and photovoltaic applications.
The electronic and optical properties of the cleavage InAs(110) surface are studied using a semi-empirical tight-binding method which employs an extended atomic-like basis set. We describe and discuss the electronic character of the surface electroni c states and we compare with other theoretical approaches, and with experimental observations. We calculate the surface electronic band structure and the Reflectance Anisotropy Spectrum, which are described and discussed in terms of the surface electronic states and the atomic structure.
The phonon properties, electronic structures and optical properties of novel carbon allotropes, such as monolayer penta-graphene (PG), double-layer PG and T12-carbon, were explored by means of first-principles calculations. Results of phonon calculat ions demonstrate that these exotic carbon allotropes are dynamically stable. In addition, the bulk T12 phase is an indirect-gap semiconductor having a bandgap of ~4.89 eV. Whereas the bulk material transforms to a 2D phase, the monolayer and double-layer PG become quasi-direct gap semiconductors with smaller band gaps of ~2.64 eV and ~3.27eV, respectively. Furthermore, the partial charge density analysis indicates that the 2D phases retain part of the electronic characteristics of the T12 phase. The linear photon energy-dependent dielectric functions and related optical properties including refractive index, extinction coefficient, absorption spectrum, reflectivity, and energy loss spectrum were also computed and discussed. The structural estimation obtained as well as other findings are in agreement with existing theoretical data. The calculated results are beneficial to the practical applications of these exotic carbon allotropes in optoelectronics and electronics.
Ba2ScSbO6 (BSS) has been synthesized in polycrystalline form by solid state reaction. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Riedvelt analysis of the XRD pattern. The crystal structure is cubi c, space group Fm-3m (No. 225. Optical band-gap of the present system has been calculated using the UV-Vis Spectroscopy to be 4.2eV. A detailed study of the electronic properties has also been carried out using the Full-Potential Linear Augmented Plane Wave (FPLAPW) as implemented in WIEN2k. BSS is found to be a large band-gap insulator with potential technological applications, such as dielectric resonators and filers in microwave applications
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا