ﻻ يوجد ملخص باللغة العربية
We demonstrate the coherent coupling and the resulting transfer of phase information between microwave and optical fields in a single nitrogen vacancy center in diamond. The relative phase of two microwave fields is encoded in a coherent superposition spin state. This phase information is then retrieved with a pair of optical fields. A related process is also used for the transfer of phase information from optical to microwave fields. These studies show the essential role of dark states, including optical pumping into the dark states, in the coherent microwave-optical coupling and open the door to the full quantum state transfer between microwave and optical fields in a solid-state spin ensemble.
Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive intera
A challenge in building large-scale superconducting quantum processors is to find the right balance between coherence, qubit addressability, qubit-qubit coupling strength, circuit complexity and the number of required control lines. Leading all-micro
Coherent conversion of microwave and optical photons in the single-quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will
A quantum memory at microwave frequencies, able to store the state of multiple superconducting qubits for long times, is a key element for quantum information processing. Electronic and nuclear spins are natural candidates for the storage medium as t
In this paper we investigate an implementation of a quantum gate for quantum information processing in a system of quantum dots in an optical cavity manipulated by collinear laser fields. For simplicity we give theoretical and numerical results only