ﻻ يوجد ملخص باللغة العربية
One of the causes of high fidelity of copying in biological systems is kinetic discrimination. In this mechanism larger dissipation and copying velocity result in improved copying accuracy. We consider a model of a polymerase which simultaneously copies a single stranded RNA and opens a single- to double-stranded junction serving as an obstacle. The presence of the obstacle slows down the motor, resulting in a change of its fidelity, which can be used to gain information about the motor and junction dynamics. We find that the motors fidelity does not depend on details of the motor-junction interaction, such as whether the interaction is passive or active. Analysis of the copying fidelity can still be used as a tool for investigating the junction kinetics.
We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimi
Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give
Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNA polymerase, which usually h
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilit
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separa