ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of Cold Electroweak Baryogenesis: Hypercharge U(1) and the creation of helical magnetic fields

155   0   0.0 ( 0 )
 نشر من قبل Zong-Gang Mou
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform numerical simulations of Cold Electroweak Baryogenesis, including for the first time in the Bosonic sector the full electroweak gauge group SU(2)$times$U(1) and CP-violation. We find that the maximum generated baryon asymmetry is reduced by a factor of three relative to the SU(2)-only model, but that the quench time dependence is very similar. In addition, we compute the magnitude of the helical magnetic fields, and find that it is proportional to the strength of CP-violation and dependent on quench time, but is not proportional to the magnitude of the baryon asymmetry as proposed in the literature. Astrophysical signatures of primordial magnetic helicity can therefore not in general be used as evidence that electroweak baryogenesis has taken place.



قيم البحث

اقرأ أيضاً

We compute the baryon asymmetry created in a tachyonic electroweak symmetry breaking transition, focusing on the dependence on the source of effective CP-violation. Earlier simulations of Cold Electroweak Baryogenesis have almost exclusively consider ed a very specific CP-violating term explicitly biasing Chern-Simons number. We compare four different dimension six, scalar-gauge CP-violating terms, involving both the Higgs field and another dynamical scalar coupled to SU(2) or U(1) gauge fields. We find that for sensible values of parameters, all implementations can generate a baryon asymmetry consistent with observations, showing that baryogenesis is a generic outcome of a fast tachyonic electroweak transition.
161 - Anders Tranberg 2010
Using large scale real-time lattice simulations, we calculate the baryon asymmetry generated at a fast, cold electroweak symmetry breaking transition. CP-violation is provided by the leading effective bosonic term resulting from integrating out the f ermions in the Minimal Standard Model at zero temperature, and performing a covariant gradient expansion [1]. This is an extension of the work presented in [2]. The numerical implementation is described in detail, and we address issues specifically related to using this CP-violating term in the context of Cold Electroweak Baryogenesis. The results support the conclusion of [2], that Standard Model CP-violation may be able to reproduce the observed baryon asymmetry in the Universe in the context of Cold Electroweak Baryogenesis.
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singl ets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
The origin of the matter-antimatter asymmetry of the universe remains one of the outstanding questions yet to be answered by modern cosmology and also one of only a handful of problems where the need of a larger number of degrees of freedom than thos e contained in the standard model (SM) is better illustrated. An appealing scenario for the generation of baryon number is the electroweak phase transition that took place when the temperature of the universe was about 100 GeV. Though in the minimal version of the SM, and without considering the interaction of the SM particles with additional degrees of freedom, this scenario has been ruled out given the current bounds for the Higgs mass, this still remains an open possibility in supersymmetric extensions of the SM. In recent years it has also been realized that large scale magnetic fields could be of primordial origin. A natural question is what effect, if any, these fields could have played during the electroweak phase transition in connection to the generation of baryon number. Prior to the electroweak symmetry breaking, the magnetic modes able to propagate for large distances belonged to the U(1) group of hypercharge and hence receive the name of hypermagnetic fields. In this contribution, we summarize recent work aimed to explore the effects that these fields could have introduced during a first order electroweak phase transition. In particular, we show how these fields induce a CP asymmetric scattering of fermions off the true vacuum bubbles nucleated during the phase transition. The segregated axial charge acts as a seed for the generation of baryon number. We conclude by mentioning possible research venues to further explore the effects of large scale magnetic fields for the generation of the baryon asymmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا