ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass spectrum and decay constants of radially excited vector mesons

90   0   0.0 ( 0 )
 نشر من قبل Eduardo Rojas
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the masses and weak decay constants of flavorless ground and radially excited $J^P=1^-$ mesons and the corresponding quantities for the K^*, within a Poincare covariant continuum framework based on the Bethe-Salpeter equation. We use in both, the quarks gap equation and the meson bound-state equation, an infrared massive and finite interaction in the leading symmetry-preserving truncation. While our numerical results are in rather good agreement with experimental values where they are available, no single parametrization of the QCD inspired interaction reproduces simultaneously the ground and excited mass spectrum, which confirms earlier work on pseudoscalar mesons. This feature being a consequence of the lowest truncation, we pin down the range and strength of the interaction in both cases to identify common qualitative features that may help to tune future interaction models beyond the rainbow-ladder approximation.



قيم البحث

اقرأ أيضاً

In this article, we firstly derive two QCD sum rules QCDSR I and QCDSR II which are respectively used to extract observable quantities of the ground states and the first radially excited states of D-wave vector $rho$ and $phi$ mesons. In our calculat ions, we consider the contributions of vacuum condensates up to dimension-7 in the operator product expansion. The predicted masses for $1^{3}D_{1}$ $rho$ meson and $2^{3}D_{1}$ $phi$ meson are consistent well with the experimental data of $rho$($1700$) and $phi$($2170$). Besides, our analysis indicates that it is reliable to assign the recent reported $Y$($2040$) state as the $2^{3}D_{1}$ $rho$ meson. Finally, we obtain the decay constants of these states with QCDSR I and QCDSR II. These predictions are helpful not only to reveal the structure of the newly observed $Y$($2040$) state but also to establish $phi$ meson and $rho$ meson families.
We present first results for light hadron masses, quark masses and decay constants in the continuum limit using O(a) improved fermions at three different values of the gauge coupling beta.
131 - Stephan Narison 2015
We summarize recently improved results for the pseudoscalar [1,2] and vector [3] meson decay constants and their ratios from QCD spectral sum rules where N2LO + estimate of the N3LO PT and power corrections up to d< 6 dimensions have been included in the SVZ expansion. The optimal results based on stability criteria with respect to the variations of the Laplace/Moments sum rule variables, QCD continuum threshold and subtraction constant mu are compared with recent sum rules and lattice calculations. To understand the apparent tension between some recent results for f_B*/f_B, we present in Section 8 a novel extraction of this ratio from heavy quark effective theory (HQET) sum rules by including the normalization factor (M_b/M_B)^2 relating the pseudoscalar to the universal HQET correlators for finite b-quark and B-meson masses. We obtain f_B*/f_B=1.025(16) in good agreement with the one 1.016(16) from (pseudo)scalar sum rules in full QCD [3]. We complete the paper by including new improved estimates of the scalar, axial-vector and B^*_c meson decays constants (Sections 11-13). For further phenomenological uses, we attempt to extract a Global Average of different sum rules and lattice determinations of the decay constants which are summarized in Tables 2-6. We do not found any deviation of these SM results from the present data.
91 - Stephan Narison 2020
Using the existing state of art of the QCD expressions of the two-point correlators into the Inverse Laplace sum rules (LSR) within stability criteria, we present a first analysis of the spectra and decay constants of B_c-like scalar (0^{++}) and axi al-vector (1^{++}) mesons and revisit the ones of the B^*_c(1^{--}) vector meson. Improved predictions are obtained by combining these LSR results with the some mass-splittings from Heavy Quark Symmetry (HQS). We complete the analysis by revisiting the B^*_{0}(0^{++}) mass which might be likely identified with the B^*_J(5732) experimental candidate. The results for the spectra collected in Table 2 are compared with some recent lattice and potential models ones. New estimates of the decay constants are given in Table 3.
We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants fpi, fK, fD and fDs, performed with Nf=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the t wisted mass fermionic action at maximal twist. We have considered for the final analysis three values of the lattice spacing, a~0.10 fm, 0.09 fm and 0.07 fm, with pion masses down to mpi~270 MeV. Our results for the light meson decay constants are fK=158.1(2.4) MeV and fK/fpi=1.210(18). From the latter ratio, by using the experimental determination of Gamma(K-->mu nu_mu (gamma))/ Gamma(pi--> mu nu_mu (gamma)) and the average value of |Vud| from nuclear beta decays, we obtain |Vus|=0.2222(34), in good agreement with the determination from semileptonic Kl3 decays and the unitarity constraint. For the D and Ds meson decay constants we obtain fD=197(9) MeV, fDs=244(8) MeV and fDs/fD=1.24(3). Our result for fD is in good agreement with the CLEO experimental measurement. For fDs our determination is smaller than the PDG 2008 experimental average but in agreement with a recent improved measurement by CLEO at the 1.4 sigma level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا