ترغب بنشر مسار تعليمي؟ اضغط هنا

EPIC 210894022b - A short period super-Earth transiting a metal poor, evolved old star

126   0   0.0 ( 0 )
 نشر من قبل Davide Gandolfi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star EPIC 210894022 has been identified from a light curve acquired through the K2 space mission as possibly orbited by a transiting planet. Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. We combine the K2 photometry with reconnaissance spectroscopy and radial velocity (RV) measurements obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of EPIC 210894022 strongly suggest it to be a member of the thick disk population. We find that the star is a metal poor ([Fe/H]=-0.53+/-0.05 dex) and alpha-rich somewhat evolved solar-like object of spectral type G3 with Teff=5730+/-50 K, logg=4.15+/-0.1 (cgs), radius of 1.3+/-0.1 R_Sun, and mass of 0.88+/-0.02 M_Sun. The RV detection together with the imaging confirms with a high level of significance that the transit signature is caused by a super-Earth orbiting the star EPIC 210894022. We measure a mass of 8.6+/-3.9 M_Earth and a radius of 1.9+/-0.2 R_Earth. A second more massive object with a period longer than about 120 days is indicated by a long term linear acceleration. With an age of > 10 Gyrs this system is one of the oldest where planets is hitherto detected. Further studies of this planetary system is important since it contains information about the planetary formation process during a very early epoch of the history of our Galaxy.



قيم البحث

اقرأ أيضاً

98 - D. Hidalgo , E. Palle , R. Alonso 2020
We report the discovery of a new planetary system with three transiting planets, one super-Earth and two sub-Neptunes, that orbit EPIC,249893012, a G8,IV-V evolved star ($M_star$,=,1.05,$pm$,0.05,$M_odot$, $R_star$,=,1.71,$pm$,0.04,$R_odot$, $T_mathr m{eff}$,=5430,$pm$,85,K). The star is just leaving the main sequence. We combined ktwo photometry with IRCS adaptive-optics imaging and HARPS, HARPS-N, and CARMENES high-precision radial velocity measurements to confirm the planetary system, determine the stellar parameters, and measure radii, masses, and densities of the three planets. With an orbital period of $3.5949^{+0.0007}_{-0.0007}$ days, a mass of $8.75^{+1.09}_{-1.08} M_{oplus}$ , and a radius of $1.95^{+0.09}_{-0.08} R_{oplus}$, the inner planet b is compatible with nickel-iron core and a silicate mantle ($rho_b= 6.39^{+1.19}_{-1.04}$ g cm$^{-3}$). Planets c and d with orbital periods of $15.624^{+0.001}_{-0.001}$ and $35.747^{+0.005}_{-0.005}$ days, respectively, have masses and radii of $14.67^{+1,84}_{-1.89} M_{oplus}$ and $3.67^{+0.17}_{-0.14} R_{oplus}$ and $10.18^{+2.46}_{-2.42} M_{oplus}$ and $3.94^{+0.13}_{-0.12} R_{oplus}$, respectively, yielding a mean density of $1.62^{+0.30}_{-0.29}$ and $0.91^{+0.25}_{-0.23}$ g cm$^{-3}$, respectively. The radius of planet b lies in the transition region between rocky and gaseous planets, but its density is consistent with a rocky composition. Its semimajor axis and the corresponding photoevaporation levels to which the planet has been exposed might explain its measured density today. In contrast, the densities and semimajor axes of planets c and d suggest a very thick atmosphere. The singularity of this system, which orbits a slightly evolved star that is just leaving the main sequence, makes it a good candidate for a deeper study from a dynamical point of view.
Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period $P_{rm b} = 0.45$ d, mass $M_{rm b} =1.59 pm 0.36$ M$_oplus$ and radius $R_{rm b}=1.42 pm 0.07$ R$_oplus$, and three mini-Neptunes: TOI-561 c, with $P_{rm c} = 10.78$ d, $M_{rm c} = 5.40 pm 0.98$ M$_oplus$, $R_{rm c}= 2.88 pm 0.09$ R$_oplus$; TOI-561 d, with $P_{rm d} = 25.6$ d, $M_{rm d} = 11.9 pm 1.3$ M$_oplus$, $R_{rm d} = 2.53 pm 0.13$ R$_oplus$; and TOI-561 e, with $P_{rm e} = 77.2$ d, $M_{rm e} = 16.0 pm 2.3$ M$_oplus$, $R_{rm e} = 2.67 pm 0.11$ R$_oplus$. Having a density of $3.0 pm 0.8$ g cm$^{-3}$, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.
Ultra-short period (USP) planets are a class of exoplanets with periods shorter than one day. The origin of this sub-population of planets is still unclear, with different formation scenarios highly dependent on the composition of the USP planets. A better understanding of this class of exoplanets will, therefore, require an increase in the sample of such planets that have accurate and precise masses and radii, which also includes estimates of the level of irradiation and information about possible companions. Here we report a detailed characterization of a USP planet around the solar-type star HD 80653 $equiv$ EP 251279430 using the K2 light curve and 108 precise radial velocities obtained with the HARPS-N spectrograph, installed on the Telescopio Nazionale Galileo. From the K2 C16 data, we found one super-Earth planet ($R_{b}=1.613pm0.071 R_{oplus}$) transiting the star on a short-period orbit ($P_{rm b}=0.719573pm0.000021$ d). From our radial velocity measurements, we constrained the mass of HD 80653 b to $M_{b}=5.60pm0.43 M_{oplus}$. We also detected a clear long-term trend in the radial velocity data. We derived the fundamental stellar parameters and determined a radius of $R_{star}=1.22pm0.01 R_{odot}$ and mass of $M_{star}=1.18pm0.04 M_{odot}$, suggesting that HD 80653, has an age of $2.7pm1.2$ Gyr. The bulk density ($rho_{b} = 7.4 pm 1.1$ g cm$^{-3}$) of the planet is consistent with an Earth-like composition of rock and iron with no thick atmosphere. Our analysis of the K2 photometry also suggests hints of a shallow secondary eclipse with a depth of 8.1$pm$3.7 ppm. Flux variations along the orbital phase are consistent with zero. The most important contribution might come from the day-side thermal emission from the surface of the planet at $Tsim3480$ K.
We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf ($V=12.81$ mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candi dates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are $1.55_{-0.17}^{+0.20},R_oplus$ and $6.34365pm 0.00028$ days for the inner planet; $1.95_{-0.22}^{+0.27},R_oplus$ and $13.85402pm 0.00088$ days for the middle planet; and $1.64_{-0.17}^{+0.18},R_oplus$ and $40.6835pm 0.0031$ days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation $1.67pm 0.38$ times that of the Earth. The planets radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of 3D global climate simulations assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than $sim 1.5$ times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, since K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.
We have detected transits of the innermost planet e orbiting 55 Cnc (V=6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted b y Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the stars mass and radius to be 0.963_{-0.029}^{+0.051} M_sun and 0.943 +/- 0.010 R_sun, the planets mass, radius, and mean density are 8.63 +/- 0.35 Mearth, 2.00 +/- 0.14 Rearth, and 5.9_{-1.1}^{+1.5} g/cm^3. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 +/- 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا