ترغب بنشر مسار تعليمي؟ اضغط هنا

SphereFace: Deep Hypersphere Embedding for Face Recognition

82   0   0.0 ( 0 )
 نشر من قبل Weiyang Liu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Geometrically, A-Softmax loss can be viewed as imposing discriminative constraints on a hypersphere manifold, which intrinsically matches the prior that faces also lie on a manifold. Moreover, the size of angular margin can be quantitatively adjusted by a parameter $m$. We further derive specific $m$ to approximate the ideal feature criterion. Extensive analysis and experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace Challenge show the superiority of A-Softmax loss in FR tasks. The code has also been made publicly available.



قيم البحث

اقرأ أيضاً

This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end , hyperspherical face recognition, as a promising line of research, has attracted increasing attention and gradually become a major focus in face recognition research. As one of the earliest works in hyperspherical face recognition, SphereFace explicitly proposed to learn face embeddings with large inter-class angular margin. However, SphereFace still suffers from severe training instability which limits its application in practice. In order to address this problem, we introduce a unified framework to understand large angular margin in hyperspherical face recognition. Under this framework, we extend the study of SphereFace and propose an improved variant with substantially better training stability -- SphereFace-R. Specifically, we propose two novel ways to implement the multiplicative margin, and study SphereFace-R under three different feature normalization schemes (no feature normalization, hard feature normalization and soft feature normalization). We also propose an implementation strategy -- characteristic gradient detachment -- to stabilize training. Extensive experiments on SphereFace-R show that it is consistently better than or competitive with state-of-the-art methods.
Face Recognition has been studied for many decades. As opposed to traditional hand-crafted features such as LBP and HOG, much more sophisticated features can be learned automatically by deep learning methods in a data-driven way. In this paper, we pr opose a two-stage approach that combines a multi-patch deep CNN and deep metric learning, which extracts low dimensional but very discriminative features for face verification and recognition. Experiments show that this method outperforms other state-of-the-art methods on LFW dataset, achieving 99.77% pair-wise verification accuracy and significantly better accuracy under other two more practical protocols. This paper also discusses the importance of data size and the number of patches, showing a clear path to practical high-performance face recognition systems in real world.
Convolutional neural networks have achieved great improvement on face recognition in recent years because of its extraordinary ability in learning discriminative features of people with different identities. To train such a well-designed deep network , tremendous amounts of data is indispensable. Long tail distribution specifically refers to the fact that a small number of generic entities appear frequently while other objects far less existing. Considering the existence of long tail distribution of the real world data, large but uniform distributed data are usually hard to retrieve. Empirical experiences and analysis show that classes with more samples will pose greater impact on the feature learning process and inversely cripple the whole models feature extracting ability on tail part data. Contrary to most of the existing works that alleviate this problem by simply cutting the tailed data for uniform distributions across the classes, this paper proposes a new loss function called range loss to effectively utilize the whole long tailed data in training process. More specifically, range loss is designed to reduce overall intra-personal variations while enlarging inter-personal differences within one mini-batch simultaneously when facing even extremely unbalanced data. The optimization objective of range loss is the $k$ greatest ranges harmonic mean values in one class and the shortest inter-class distance within one batch. Extensive experiments on two famous and challenging face recognition benchmarks (Labeled Faces in the Wild (LFW) and YouTube Faces (YTF) not only demonstrate the effectiveness of the proposed approach in overcoming the long tail effect but also show the good generalization ability of the proposed approach.
Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. Howeve r, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by $L_2$ normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. Extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmarks, which confirms the effectiveness of our proposed approach.
With the development of deep learning, Deep Metric Learning (DML) has achieved great improvements in face recognition. Specifically, the widely used softmax loss in the training process often bring large intra-class variations, and feature normalizat ion is only exploited in the testing process to compute the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and weight vectors in softmax loss larger than a margin in the training step, and extend it from four aspects. First, we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraint to force the intra-class cosine similarity larger than the mean inter-class cosine similarity with a margin in the exponential feature projection space. Extensive experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and IARPA Janus Benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream DML methods and approach the state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا