ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite dimensional simple modules of deformed current Lie algebras

155   0   0.0 ( 0 )
 نشر من قبل Kentaro Wada
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Kentaro Wada




اسأل ChatGPT حول البحث

The deformed current Lie algebra was introduced by the author to study the representation theory of cyclotomic q-Schur algebras at q=1. In this paper, we classify finite dimensional simple modules of deformed current Lie algebras.



قيم البحث

اقرأ أيضاً

The $(q, mathbf{Q})$-current algebra associated with the general linear Lie algebra was introduced by the second author in the study of representation theory of cyclotomic $q$-Schur algebras. In this paper, we study the $(q, mathbf{Q})$-current algeb ra $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$ associated with the special linear Lie algebra $mathfrak{sl}_n$. In particular, we classify finite dimensional simple $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$-modules.
176 - Ryosuke Kodera 2009
We calculate the first extension groups for finite-dimensional simple modules over an arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and their multivariable analogs.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
In the present paper, we prove that any finite non-trivial irreducible module over a rank two Lie conformal algebra $mathcal{H}$ is of rank one. We also describe the actions of $mathcal{H}$ on its finite irreducible modules explicitly. Moreover, we s how that all finite non-trivial irreducible modules of finite Lie conformal algebras whose semisimple quotient is the Virasoro Lie conformal algebra are of rank one.
For a Lie algebra ${mathcal L}$ with basis ${x_1,x_2,cdots,x_n}$, its associated characteristic polynomial $Q_{{mathcal L}}(z)$ is the determinant of the linear pencil $z_0I+z_1text{ad} x_1+cdots +z_ntext{ad} x_n.$ This paper shows that $Q_{mathcal L }$ is invariant under the automorphism group $text{Aut}({mathcal L}).$ The zero variety and factorization of $Q_{mathcal L}$ reflect the structure of ${mathcal L}$. In the case ${mathcal L}$ is solvable $Q_{mathcal L}$ is known to be a product of linear factors. This fact gives rise to the definition of spectral matrix and the Poincar{e} polynomial for solvable Lie algebras. Application is given to $1$-dimensional extensions of nilpotent Lie algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا