ﻻ يوجد ملخص باللغة العربية
Let $Omega$ be a domain in $mathbb{C}$ with hyperbolic metric $lambda_Omega(z)|dz|$ of Gaussian curvature $-4.$ Mejia and Minda proved in their 1990 paper that $Omega$ is (Euclidean) convex if and only if $d(z,partialOmega)lambda_Omega(z)ge1/2$ for $zinOmega,$ where $d(z,partialOmega)$ denotes the Euclidean distance from $z$ to the boundary $partialOmega.$ In the present note, we will provide similar characterizations of spherically convex domains in terms of the spherical density of the hyperbolic metric.
We compare a Gromov hyperbolic metric with the hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between the Gromov hyperbolic metric and some hyperbolic type metrics. We also obtain several sharp
In this paper our aim is to determine the radii of univalence, starlikeness and convexity of the normalized regular Coulomb wave functions for two different kinds of normalization. The key tools in the proof of our main results are the Mittag-Leffler
It is known that every infinite index quasi-convex subgroup $H$ of a non-elementary hyperbolic group $G$ is a free factor in a larger quasi-convex subgroup of $G$. We give a probabilistic generalization of this result. That is, we show that when $R$
Suppose that $E$ and $E$ denote real Banach spaces with dimension at least $2$ and that $Dsubset E$ and $Dsubset E$ are domains. In this paper, we establish, in terms of the $j_D$ metric, a necessary and sufficient condition for the homeomorphism $f:
The $Pi$-operator (Ahlfors-Beurling transform) plays an important role in solving the Beltrami equation. In this paper we define two $Pi$-operators on the n-sphere. The first spherical $Pi$-operator is shown to be an $L^2$ isometry up to isomorphism.