ﻻ يوجد ملخص باللغة العربية
In order to model a spiral spin state in a thin film, we study a classical Heisenberg model with open boundary conditions. With magnetic field applied in the plane of the film, the spin state becomes ferromagnetic above a critical field that increases with thickness $N$. For a given $N$, the spiral passes through states with $n= n_0$ up to 0 complete periods in steps of 1. These numerical results agree with earlier analytic results in the continuum limit and help explain the susceptibility jumps observed in thin films.
The low temperature magnetic properties of pyrochlore compound Dy2Ti2O7 in magnetic fields applied along the [111] direction are reported. Below 1 K, a clear plateau has been observed in the magnetization process in the field range 2~9 kOe, followed
Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin reson
The spin orientation of a magnetic dopant in a zincblende semiconductor strongly influences the spatial structure of an acceptor state bound to the dopant. The acceptor state has a roughly oblate shape with the short axis aligned with the dopants cor
Simulations are essential to accelerate the discovery of new materials and to gain full understanding of known ones. Although hard to realize experimentally, periodic boundary conditions are omnipresent in material simulations. In this work, we intro
We have investigated azimuthal spin-wave modes in magnetic vortex structures using time-resolved Kerr microscopy. Spatially resolved phase and amplitude spectra of ferromagnetic disks with diameters from 5 $mu$m down to 500 nm reveal that the lowest