ترغب بنشر مسار تعليمي؟ اضغط هنا

Photodynamics of quantum emitters in hexagonal boron nitride revealed by low temperature spectroscopy

113   0   0.0 ( 0 )
 نشر من قبل Bernd Sontheimer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bernd Sontheimer




اسأل ChatGPT حول البحث

Quantum emitters in hexagonal boron nitride (hBN) have recently emerged as promising bright single photon sources. In this letter we investigate in details their optical properties at cryogenic temperatures. In particular, we perform temperature resolved photoluminescence studies and measure photon coherence times from the hBN emitters. The obtained value of 81(1) ps translates to a width of $sim$12 GHz which is higher than the Fourier transform limited value of $sim$32 MHz. To account for the photodynamics of the emitter, we perform ultrafast spectral diffusion measurements that partially account for the coherence times. Our results provide important insight into the relaxation processes in quantum emitters in hBN which is mandatory to evaluate their applicability for quantum information processing.

قيم البحث

اقرأ أيضاً

Combining solid state single photon emitters (SPE) with nanophotonic platforms is a key goal in integrated quantum photonics. In order to realize functionality in potentially scalable elements, suitable SPEs have to be bright, stable, and widely tuna ble at room temperature. In this work we show that selected SPEs embedded in a few layer hexagonal boron nitride (hBN) meet these demands. In order to show the wide tunability of these SPEs we employ an AFM with a conductive tip to apply an electrostatic field to individual hBN emitters sandwiched between the tip and an indium tin oxide coated glass slide. A very large and reversible Stark shift of $(5.5 pm 3),$nm at a zero field wavelength of $670,$nm was induced by applying just $20,$V, which exceeds the typical resonance linewidths of nanodielectric and even nanoplasmonic resonators. Our results are important to further understand the physical origin of SPEs in hBN as well as for practical quantum photonic applications where wide spectral tuning and on/off resonance switching are required.
Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, we apply tensile st rain to quantum emitters embedded in few-layer hBN films and realize both red and blue spectral shifts with tuning magnitudes up to 65 meV, a record for any two-dimensional quantum source. We demonstrate reversible tuning of the emission and related photophysical properties. We also observe rotation of the optical dipole in response to strain, suggesting the presence of a second excited state. We derive a theoretical model to describe strain-based tuning in hBN, and the rotation of the optical dipole. Our work demonstrates the immense potential for strain tuning of quantum emitters in layered materials to enable their employment in scalable quantum photonic networks.
Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to p osition such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BNs quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations.
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nano scale hexagonal boron-nitride. We show that these nanothermometers exhibit better performance than that of homologous, all-optical nanothermometers both in sensitivity and range of working temperature. We demonstrate their effectiveness as nanothermometers by monitoring the local temperature at specific locations in a variety of custom-built micro-circuits. This work opens new avenues for nanoscale temperature measurements and heat flow studies in miniaturized, integrated devices.
Unlike the electrical conductance that can be widely modulated within the same material even in deep nanoscale devices, tuning the thermal conductance within a single material system or nanostructure is extremely challenging and requires a large-scal e device. This prohibits the realization of robust ON/OFF states in switching the flow of thermal currents. Here, we present the theory of a thermal switch based on resonant coupling of three photonic resonators, in analogy to the field-effect electronic transistor composed of a source, gate, and drain. As a material platform, we capitalize on the extreme tunability and low-loss resonances observed in the dielectric function of monolayer hexagonal boron nitride (hBN) under controlled strain. We derive the dielectric function of hBN from first principles, including the phonon-polariton linewidths computed by considering phonon isotope and anharmonic phonon-phonon scattering. Subsequently, we propose a strain-controlled hBN-based thermal switch that modulates thermal conductance by more than an order of magnitude, corresponding to an ON/OFF contrast ratio of 98%, in a deep subwavelength nanostructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا