ترغب بنشر مسار تعليمي؟ اضغط هنا

Shaping the longitudinal intensity pattern of Cartesian beams in lossless and lossy media

86   0   0.0 ( 0 )
 نشر من قبل Mateus Corato-Zanarella
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several applications, such as optical tweezers and atom guiding, benefit from techniques that allow the engineering of optical fields spatial profiles, in particular their longitudinal intensity patterns. In cylindrical coordinates, methods such as Frozen Waves allow an advanced control of beams characteristics, but in Cartesian coordinates there is no analogous technique. Since Cartesian beams may also be useful for applications, we develop here a method to modulate on-demand the longitudinal intensity pattern of any (initially) unidimensional Cartesian beam with concentrated wavevector spectrum, thus encompassing all paraxial unidimensional beams. To this end, we write the total beam as a product of two unidimensional beams and explore the degree of freedom provided by the additional Cartesian coordinate. While in the plane where this coordinate is zero the chosen unidimensional beam keeps its structure with the additional desired intensity modulation, a sinusoidal-like oscillation appears in the direction of this variable and creates a spot whose size is tunable. Examples with Gaussian and Airy beams are presented and their corresponding experimental demonstrations are performed to show the validity of the method.



قيم البحث

اقرأ أيضاً

Diffraction-free Bessel beams have attracted major interest because of their stability even in regimes of nonlinear propagation and filamentation. However, Kerr nonlinear couplings are known to induce significant longitudinal intensity modulation, de trimental to the generation of uniform plasma or for applications in the processing of transparent materials. These nonlinear instabilities arise from the generation of new spatio-spectral components through an initial stage of continuous spectral broadening followed by four wave mixing. In this paper, we investigate analytically and numerically these processes and show that nonlinear instabilities can be controlled through shaping the spatial spectral phase of the input beam. This opens new routes for suppressing the nonlinear growth of new frequencies and controlling ultrashort pulse propagation in dielectrics.
In this tutorial, we discuss the radiation from a Hertzian dipole into uniform isotropic lossy media of infinite extent. If the medium is lossless, the radiated power propagates to infinity, and the apparent dissipation is measured by the radiation r esistance of the dipole. If the medium is lossy, the power exponentially decays, and the physical meaning of radiation resistance needs clarification. Here, we present explicit calculations of the power absorbed in the infinite lossy host space and discuss the limit of zero losses. We show that the input impedance of dipole antennas contains a radiation-resistance contribution which does not depend on the imaginary part of the refractive index. This fact means that the power delivered by dipole antennas to surrounding space always contains a contribution from far fields unless the real part of the refractive index is zero. Based on this understanding, we discuss the fundamental limitations of power coupling between two antennas and possibilities of removing the limit imposed by radiation damping.
Most data is automatically collected and only ever seen by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate r equired to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
We present the first experimental observation of modulation instability of partially spatially incoherent light beams in non-instantaneous nonlinear media. We show that even in such a nonlinear partially coherent system (of weakly-correlated particle s) patterns can form spontaneously. Incoherent MI occurs above a specific threshold that depends on the beams coherence properties (correlation distance), and leads to a periodic train of one-dimensional (1D) filaments. At a higher value of nonlinearity, incoherent MI displays a two-dimensional (2D) instability and leads to self-ordered arrays of light spots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا