ترغب بنشر مسار تعليمي؟ اضغط هنا

A compact and modular X and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors

190   0   0.0 ( 0 )
 نشر من قبل Riccardo Campana
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of prototypes have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and gamma-rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.



قيم البحث

اقرأ أيضاً

68 - P. Lv , S.L. Xiong , X.L. Sun 2018
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) project is the planned Chinese space telescope for detecting the X and gamma-ray counterpart. It consists of two micro-satellites in low earth orbit with the advan tages of instantaneous full-sky coverage, low energy threshold down to 6 keV and can be achieved within a short period and small budget. Due to the limitation of size, weight and power consumption of micro-satellites, silicon photomultipliers (SiPMs) are used to replace the photomultiplier tubes (PMTs) to assemble a novel gamma-ray detector. A prototype of a SiPM array with LaBr3 crystal is built and tested, and it shows a high detection efficiency (70% at 5.9 keV) and an acceptable uniformity. The low-energy X-ray of 5.9 keV can be detected by a simply readout circuit, and the energy resolution is 6.5% (FWHM) at 662 keV. The design and performance of the detector are discussed in detail in this paper.
399 - E. Del Monte 2014
During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrum entation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we bombarded the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.
PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensit ive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.
Low-pressure gaseous TPCs are well suited detectors to correlate the directions of nuclear recoils to the galactic Dark Matter (DM) halo. Indeed, in addition to providing a measure of the energy deposition due to the elastic scattering of a DM partic le on a nucleus in the target gas, they allow for the reconstruction of the track of the recoiling nucleus. In order to exclude the background events originating from radioactive decays on the surfaces of the detector materials within the drift volume, efforts are ongoing to precisely localize the track nuclear recoil in the drift volume along the axis perpendicular to the cathode plane. We report here the implementation of the measure of the signal induced on the cathode by the motion of the primary electrons toward the anode in a MIMAC chamber. As a validation, we performed an independent measurement of the drift velocity of the electrons in the considered gas mixture, correlating in time the cathode signal with the measure of the arrival times of the electrons on the anode.
With the observation of the gravitational wave event of August 17th 2017 the multi-messenger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have new instruments and a perfect coordination of the existing observatories. Crystal Eye is a detector aimed at the exploration of the electromagnetic counterpart of the gravitational waves. Such events generated by neutron stars mergers are associated with gamma-ray bursts (GRB). At present, there are few instruments in orbit able to detect photons in the energy range going from tens of keV up to few MeV. These instruments belong to two different old observation concepts: the all sky monitors (ASM) and the telescopes. The detector we propose is a crossover technology, the Crystal Eye: a wide field of view observatory in the energy range from 10 keV to 10 MeV with a pixelated structure. A pathfinder will be launched with Space RIDER in 2022. We here present the preliminary results of the characterization of the first pixel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا