ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminous Quasars Do Not Live in the Most Overdense Regions of Galaxies at z~4

95   0   0.0 ( 0 )
 نشر من قبل Hisakazu Uchiyama
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hisakazu Uchiyama




اسأل ChatGPT حول البحث

We present the cross-correlation between 151 luminous quasars ($M_{ mathrm{UV}} < -26$) and 179 protocluster candidates at $z sim 3.8$, extracted from the Wide imaging survey ($ sim 121~ $deg$^2$) performed with a part of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We find that only two out of 151 quasars reside in regions that are more overdense compared to the average field at $ > 4 sigma $. The distributions of the distance between quasars and the nearest protoclusters and the significance of the overdensity at the position of quasars are statistically identical to those found for $g$-dropout galaxies, suggesting that quasars tend to reside in almost the same environment as star-forming galaxies at this redshift. Using stacking analysis, we find that the average density of $g$-dropout galaxies around quasars is slightly higher than that around $g$-dropout galaxies on $1.0 - 2.5$ pMpc scales, while at $ < 0.5$ pMpc that around quasars tends to be lower. We also find that quasars with higher UV-luminosity or with more massive black holes tend to avoid the most overdense regions, and that the quasar near zone sizes are anti-correlated with overdensity. These findings are consistent with a scenario in which the luminous quasar at $z sim4 $ resides in structures that are less massive than those expected for the progenitors of todays rich clusters of galaxies, and possibly that luminous quasars may be suppressing star formation in their close vicinity.



قيم البحث

اقرأ أيضاً

In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clus tered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.
Characterizing high-z quasar environments is key to understanding the co-evolution of quasars and the surrounding galaxies. To restrict their global picture, we statistically examine the g-dropout galaxy overdensity distribution around 570 faint quas ar candidates at z ~ 4, based on the Hyper Suprime-Cam Subaru Strategic Program survey. We compare the overdensity significances of g-dropout galaxies around the quasars with those around g-dropout galaxies, and find no significant difference between their distributions. A total of 4 (22) out of the 570 faint quasars, 0.7_{-0.4}^{+0.4} (3.9_{-0.8}^{+0.8}) %, are found to be associated with the > 4 sigma overdense regions within an angular separation of 1.8 (3.0) arcmin, which is the typical size of protoclusters at this epoch. This is similar to the fraction of g-dropout galaxies associated with the > 4 sigma overdense regions. This result is consistent with our previous work that 1.3_{-0.9}^{+0.9} % and 2.0_{-1.1}^{+1.1} % of luminous quasars detected in the Sloan Digital Sky Survey exist in the > 4 sigma overdense regions within 1.8 and 3.0 arcmin separations, respectively. Therefore, we suggest that the galaxy number densities around quasars are independent of their luminosity, and most quasars do not preferentially appear in the richest protocluster regions at z ~ 4. The lack of an apparent positive correlation between the quasars and the protoclusters implies that: i) the gas-rich major merger rate is relatively low in the protocluster regions, ii) most high-z quasars may appear through secular processes, or iii) some dust-obscured quasars exist in the protocluster regions.
359 - V. Gonzalez-Perez 2020
Current and future cosmological surveys are targeting star-forming galaxies at $zsim 1$ with nebular emission lines. We use a state-of-the-art semi-analytical model of galaxy formation and evolution to explore the large scale environment of star-form ing emission line galaxies (ELGs). Model ELGs are selected such that they can be compared directly with the DEEP2, VVDS, eBOSS-SGC and DESI surveys. The large scale environment of the ELGs is classified using velocity-shear-tensor and tidal-tensor algorithms. Half of the model ELGs live in filaments and about a third in sheets. Model ELGs which reside in knots have the largest satellite fractions. We find that the shape of the mean halo occupation distribution of model ELGs varies widely for different large scale environments. To interpret our results, we also study fixed number density samples of ELGs and galaxies selected using simpler criteria, with single cuts in stellar mass, star formation rate and [OII] luminosity. The fixed number density ELG selection produces samples that are close to L[OII] and SFR selected samples for densities above $10^{-4.2}h^{3}{rm Mpc}^{-3}$. ELGs with an extra cut in stellar mass applied to fix their number density, present differences in sheets and knots with respect to the other samples. ELGs, SFR and L[OII] selected samples with equal number density have similar large scale bias but their clustering below separations of $1h^{-1}$Mpc is different.
Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, ho wever, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log($L_{bol}$ [erg/s]) $>$ 45) at z $sim$ 0.6 using HST WFC3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25% of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is $leqslant$20%. While major mergers might increase the incidence of (luminous AGN), they are not the prevalent triggering mechanism in the population of unobscured AGN.
153 - R. A. Overzier , X. Shu , W. Zheng 2009
We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا