ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards fully commercial, UV-compatible fiber patch cords

64   0   0.0 ( 0 )
 نشر من قبل Christian Marciniak
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and analyze two pathways to produce commercial optical-fiber patch cords with stable long-term transmission in the ultraviolet (UV) at powers up to $sim$ 200 mW, and typical bulk transmission between 66-75%. Commercial fiber patch cords in the UV are of great interest across a wide variety of scientific applications ranging from biology to metrology, and the lack of availability has yet to be suitably addressed. We provide a guide to producing such solarization-resistant, hydrogen-passivated, polarization-maintaining, connectorized and jacketed optical fibers compatible with demanding scientific and industrial applications. Our presentation describes the fabrication and hydrogen loading procedure in detail and presents a high-pressure vessel design, calculations of required Ht loading times, and information on patch cord handling and the mitigation of bending sensitivities. Transmission at 313 nm is measured over many months for cumulative energy on the fiber output of > 10 kJ with no demonstrable degradation due to UV solarization, in contrast to standard uncured fibers. Polarization sensitivity and stability are characterized yielding polarization extinction ratios between 15 dB and 25 dB at 313 nm, where we find patch cords become linearly polarizing. We observe that particle deposition at the fiber facet induced by high-intensity UV exposure can (reversibly) deteriorate patch cord performance and describe a technique for nitrogen purging of fiber collimators which mitigates this phenomenon.

قيم البحث

اقرأ أيضاً

The continuous-variable version of quantum key distribution (QKD) offers the advantages (over discrete-variable systems) of higher secret key rates in metropolitan areas as well as the use of standard telecom components that can operate at room tempe rature. An important step in the real-world adoption of continuous-variable QKD is the deployment of field tests over commercial fibers. Here we report two different field tests of a continuous-variable QKD system through commercial fiber networks in Xian and Guangzhou over distances of 30.02 km (12.48 dB) and 49.85 km (11.62 dB), respectively. We achieve secure key rates two orders-of-magnitude higher than previous field test demonstrations. This is achieved by developing a fully automatic control system to create stable excess noise and by applying a rate-adaptive reconciliation protocol to achieve a high reconciliation efficiency with high success probability. Our results pave the way to achieving continuous-variable QKD in a metropolitan setting.
Both photonic quantum computation and the establishment of a quantum internet require fiber-based measurement and feed-forward in order to be compatible with existing infrastructure. Here we present a fiber-compatible scheme for measurement and feed- forward, whose performance is benchmarked by carrying out remote preparation of single-photon polarization states at telecom-wavelengths. The result of a projective measurement on one photon deterministically controls the path a second photon takes with ultrafast optical switches. By placing well-calibrated {bulk} passive polarization optics in the paths, we achieve a measurement and feed-forward fidelity of (99.0 $pm$ 1)%, after correcting for other experimental errors. Our methods are useful for photonic quantum experiments including computing, communication, and teleportation.
Quantum key distribution (QKD), the distribution of quantum secured keys useful for data encryption, is expected to have a crucial impact in the next decades. However, although the notable achievements accomplished in the last twenty years, many prac tical and serious challenges are limiting the full deployment of this novel quantum technology in the current telecommunication infrastructures. In particular, the co-propagation of quantum signals and high-speed data traffic within the same optical fiber, is not completely resolved, due to the intrinsic noise caused by the high intensity of the classical signals. As a consequence, current co-propagation schemes limit the amount of classical optical power in order to reduce the overall link noise. However, this ad-hoc solution restrains the overall range of possibilities for a large-scale QKD deployment. Here, we propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals. In addition, we compare the performances of this scheme with an off-the-shelf quantum receiver, equipped with a standard InGaAs detector, over different lengths of an installed fiber link. Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb-dipole transition (369.5 nm) based on a second order sum frequency process in a PPKTP waveguide. An external (internal) conversion efficiency ab ove 5% (10%) is shown using classical bright light.
Plasmonic antennas are attractive optical structures for many applications in nano and quantum technologies. By providing enhanced interaction between a nanoemitter and light, they efficiently accelerate and direct spontaneous emission. One challenge , however, is the precise nanoscale positioning of the emitter in the structure. Here we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal-insulator-metal structures at the nanoscale, the fabricated single emitter antenna exhibits an extremely high Purcell factor (>72) and brightness enhancement by a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot. Our technology permits the fabrication of bright room-temperature single-emitter sources emitting either multiple or single photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا