ترغب بنشر مسار تعليمي؟ اضغط هنا

H2CO distribution and formation in the TW Hya disk

80   0   0.0 ( 0 )
 نشر من قبل Karin Oberg
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

H2CO is one of the most readily detected organic molecules in protoplanetary disks. Yet its distribution and dominant formation pathway(s) remain largely unconstrained. To address these issues, we present ALMA observations of two H2CO lines (3_{12}-2_{11} and 5_{15}-4_{14}) at 0.5 (~30 au) spatial resolution toward the disk around the nearby T Tauri star TW Hya. Emission from both lines is spatially resolved, showing a central depression, a peak at 0.4 radius, and a radial decline at larger radii with a bump at ~1, near the millimeter continuum edge. We adopt a physical model for the disk and use toy models to explore the radial and vertical H2CO abundance structure. We find that the observed emission implies the presence of at least two distinct H2CO gas reservoirs: (1) a warm and unresolved inner component (<10 au), and (2) an outer component that extends from ~15 au to beyond the millimeter continuum edge. The outer component is further constrained by the line ratio to arise in a more elevated disk layer at larger radii. The inferred H2CO abundance structure agrees well with disk chemistry models, which predict efficient H2CO gas-phase formation close to the star, and cold H2CO grain surface formation, through H additions to condensed CO, followed by non-thermal desorption in the outer disk. The implied presence of active grain surface chemistry in the TW Hya disk is consistent with the recent detection of CH3OH emission, and suggests that more complex organic molecules are formed in disks, as well.

قيم البحث

اقرأ أيضاً

We present two epochs of observations of TW Hya from the high-dispersion near-IR spectrograph ARIES at the MMT. We detect strong emission from the Brackett gamma transition of hydrogen, indicating an accretion rate substantially larger than previousl y estimated using hydrogen line emission. The Brackett gamma line-strength varies across our two observed epochs. We also measure circumstellar-to-stellar flux ratios (i.e., veilings) that appear close to zero in both epochs. These findings suggest that TW Hya experiences episodes of enhanced accretion while the inner disk remains largely devoid of dust. We discuss several physical mechanisms that may explain these observations.
We report the detection of spiral substructure in both the gas velocity and temperature structure of the disk around TW~Hya, suggestive of planet-disk interactions with an unseen planet. Perturbations from Keplerian rotation tracing out a spiral patt ern are observed in the SE of the disk, while significant azimuthal perturbations in the gas temperature are seen in the outer disk, outside 90~au, extending the full azimuth of the disk. The deviation in velocity is either $Delta v_{phi} , / , v_{rm kep} sim 0.1$ or $Delta v_{z} , / , v_{rm kep} sim 0.01$ depending on whether the perturbation is in the rotational or vertical direction, while radial perturbations can be ruled out. Deviations in the gas temperature are $pm 4$ K about the azimuthally averaged profile, equivalent to deviations of $Delta T_{rm gas} , / , T_{rm gas} sim 0.05$. Assuming all three structures can be described by an Archimedean spiral, measurements of the pitch angles of both velocity and temperature spirals show a radially decreasing trend for all three, ranging from 9$^{circ}$ at 70 au, dropping to 3$^{circ}$ at 200 au. Such low pitch-angled spirals are not readily explained through the wake of an embedded planet in the location of previously reported at 94 au, but rather require a launching mechanism which results in much more tightly wound spirals. Molecular emission tracing distinct heights in the disk is required to accurately distinguish between spiral launching mechanisms.
105 - A. J. Weinberger 2001
The face-on disk around TW Hya is imaged in scattered light at wavelengths of 1.1 and 1.6 micron using the coronagraph in the Near Infrared Camera and Multi Object Spectrometer aboard the Hubble Space Telescope. Stellar light scattered from the optic ally thick dust disk is seen from 20-230 AU. The surface brightness declines as a power law of r^(-2.6+/-0.1) between 45 and 150 AU. The scattering profile indicates that the disk is flared, not geometrically flat. The disk, while spatially unresolved in thermal radiation at wavelengths of 12 and 18 micron in observations from the W. M. Keck Observatory, shows amorphous and crystalline silicate emission in its spectrum. A disk with silicate grains of a ~1 micron in size in its surface layers can explain the shape of the mid-infrared spectrum. Much larger grains in the disk interior are necessary to fit the millimeter-wave spectral energy distribution, and hence grain growth from an original interstellar size population may have occurred.
We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with $sim50$ milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze these multi-wavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 mm and 3.1 mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multi-wavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is $>1$ mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At $r>20$ au, we find evidence of the accumulation of large dust particle at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 $M_{oplus}$, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.
For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being i nconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 um) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا