ترغب بنشر مسار تعليمي؟ اضغط هنا

Copper Doping of BaNi$_{2}$As$_{2}$: Giant Phonon Softening and Superconductivity Enhancement

47   0   0.0 ( 0 )
 نشر من قبل Kazutaka Kudo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of copper doping on the structural and superconducting phase transitions of Ba(Ni$_{1-x}$Cu$_{x}$)$_{2}$As$_{2}$ were studied by examining the resistivity, magnetic susceptibility, and specific heat. We found an abrupt increase in the superconducting transition temperature $T_{rm c}$ from 0.6 K in the triclinic phase with less copper ($x$ $leq$ 0.16) to 2.5-3.2 K in the tetragonal phase with more copper ($x$ $>$ 0.16). The specific-heat data suggested that doping-induced phonon softening was responsible for the enhanced superconductivity in the tetragonal phase. All of these observations exhibited striking similarities to those observed in the phosphorus doping of BaNi$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ [K. Kudo et al., Phys. Rev. Lett. 109, 097002 (2012).], which markedly contrast the behavior of phosphorus and copper doping of the iron-based superconductor BaFe$_{2}$As$_{2}$.


قيم البحث

اقرأ أيضاً

Analogous to 2D layered transition metal dichalcogenides, the TlSe family of 1D chain materials with Zintl-type structure exhibits exotic phenomena under high-pressure. In the present work, we have systematically investigated the high-pressure behavi or of TlInTe 2 using Raman spectroscopy, synchrotron X-ray diffraction, and transport measurements, in combination with crystal structure prediction (CSP) based on the evolutionary approach and first principles calculations. We found that TlInTe$_2$ undergoes a pressure driven semiconductor to semimetal transition at 4 GPa, followed by a superconducting transition at 5.7 GPa (with Tc = 3.8 K) induced by a Lifshitz transition. The Lifshitz transition is initiated by the appearance of new electron pockets on the Fermi surface, which evolve with pressure and connect to the adjacent electron pockets forming an umbrella shaped Fermi surface at the top and bottom of the Brillouin zone. An unusual giant phonon softening (Ag mode) concomitant with a V-shaped Tc behavior appears at 10-12 GPa as a result of the interaction of optical phonons with the conduction electrons, resulting in Fano line shaped asymmetry in Ag mode. A prominent Tc anomaly concurrent with the Ag mode softening at 19-20 GPa is correlated to the semimetal to metal transition. The CSP calculations reveal that these transitions are not accompanied by any structural phase transitions up to the maximum pressure achieved, 33.5 GPa. Our findings on TlInTe$_2$ open up a new platform to study a plethora of unexplored high pressure novel phenomena in TlSe family induced by Lifshitz transition (electronic driven), phonon softening and electron-phonon coupling.
180 - Lilia Boeri 2010
We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe$_{2}$As$_{2}+delta$ using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by $sim 50%$, up to $lambda lesssim 0.35$, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that $lambda$ versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.
BaNi$_{2}$As$_{2}$ is a non-magnetic analogue of BaFe$_{2}$As$_{2}$, the parent compound of a prototype ferro-pnictide high-temperature superconductor. Recent diffraction studies on BaNi$_{2}$As$_{2}$ demonstrate the existence of two types of periodi c lattice distortions above and below the tetragonal to triclinic phase transition, suggesting charge-density-wave (CDW) order to compete with superconductivity. We apply time-resolved optical spectroscopy and demonstrate the existence of collective CDW amplitude modes. The smooth evolution of these modes through the structural phase transition implies the CDW order in the triclinic phase smoothly evolves from the unidirectional CDW in the tetragonal phase and suggests that the CDW order drives the structural phase transition.
166 - Zhi Ren , Qian Tao , Shuai Jiang 2009
We have studied EuFe$_{2}$(As$_{0.7}$P$_{0.3}$)$_{2}$ by the measurements of x-ray diffraction, electrical resistivity, thermopower, magnetic susceptibility, magnetoresistance and specific heat. Partial substitution of As with P results in the shrink age of lattice, which generates chemical pressure to the system. It is found that EuFe$_{2}$(As$_{0.7}$P$_{0.3}$)$_{2}$ undergoes a superconducting transition at 26 K, followed by ferromagnetic ordering of Eu$^{2+}$ moments at 20 K. This finding is the first observation of superconductivity stabilized by internal chemical pressure, and supplies a rare example showing coexistence of superconductivity and ferromagnetism in the ferro-arsenide family.
117 - G. M. Zhao 2001
We have evaluated the total carrier mass enhancement factor f_{t} for MgB_{2} from two independent experiments (specific heat and upper critical field). These experiments consistently show that f_{t} = 3.1pm0.1. The unusually large f_{t} is incompati ble with the measured reduced gap (2Delta (0)/k_{B}T_{c} = 4.1) and the total isotope-effect exponent (alpha = 0.28pm0.04) within the conventional phonon-mediated model. We propose an unconventional phonon-mediated mechanism, which is able to quantitatively explain the values of T_{c}, f_{t}, alpha, and the reduced energy gap in a consistent way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا