ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Boundedness of State Trajectories of Stable LTI Systems in the Presence of Nonvanishing Stochastic Perturbation

119   0   0.0 ( 0 )
 نشر من قبل Peyman Azodi
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies stochastic boundedness of trajectories of a nonvanishing stochastically perturbed stable LTI system. First, two definitions on stochastic boundedness of stochastic processes are presented, then the boundedness is analyzed via Lyapunov theory. In this proposed theorem, it is shown that under a condition on the Lipchitz constant of the perturbation kernel, the trajectories remain stochastically bounded in the sense of the proposed definitions and the bounds are calculated. Also, the limiting behavior of the trajectories have been studied. At the end an illustrative example is presented, which shows the effectiveness of the proposed theory.



قيم البحث

اقرأ أيضاً

84 - Zhou Fang , Chuanhou Gao 2016
For stochastic systems with nonvanishing noise, i.e., at the desired state the noise port does not vanish, it is impossible to achieve the global stability of the desired state in the sense of probability. This bad property also leads to the loss of stochastic passivity at the desired state if a radially unbounded Lyapunov function is expected as the storage function. To characterize a certain (globally) stable behavior for such a class of systems, the stochastic asymptotic weak stability is proposed in this paper which suggests the transition measure of the state to be convergent and the ergodicity. By defining stochastic weak passivity that admits stochastic passivity only outside a ball centered around the desired state but not in the whole state space, we develop stochastic weak passivity theorems to ensure that the stochastic systems with nonvanishing noise can be globallylocally stabilized in weak sense through negative feedback law. Applications are shown to stochastic linear systems and a nonlinear process system, and some simulation are made on the latter further.
This paper investigates optimal consumption in the stochastic Ramsey problem with the Cobb-Douglas production function. Contrary to prior studies, we allow for general consumption processes, without any a priori boundedness constraint. A non-standard stochastic differential equation, with neither Lipschitz continuity nor linear growth, specifies the dynamics of the controlled state process. A mixture of probabilistic arguments are used to construct the state process, and establish its non-explosiveness and strict positivity. This leads to the optimality of a feedback consumption process, defined in terms of the value function and the state process. Based on additional viscosity solutions techniques, we characterize the value function as the unique classical solution to a nonlinear elliptic equation, among an appropriate class of functions. This characterization involves a condition on the limiting behavior of the value function at the origin, which is the key to dealing with unbounded consumptions. Finally, relaxing the boundedness constraint is shown to increase, strictly, the expected utility at all wealth levels.
142 - Yorai Wardi , Carla Seatzu 2014
This paper presents a new approach to congestion management at traffic-light intersections. The approach is based on controlling the relative lengths of red/green cycles in order to have the congestion level track a given reference. It uses an integr al control with adaptive gains, designed to provide fast tracking and wide stability margins. The gains are inverse-proportional to the derivative of the plant-function with respect to the control parameter, and are computed by infinitesimal perturbation analysis. Convergence of this technique is shown to be robust with respect to modeling uncertainties, computing errors, and other random effects. The framework is presented in the setting of stochastic hybrid systems, and applied to a particular traffic-light model. This is but an initial study and hence the latter model is simple, but it captures some of the salient features of traffic-light processes. The paper concludes with comments on possible extensions of the proposed approach to traffic-light grids with realistic flow models.
64 - Zhou Fang , Chuanhou Gao 2016
In this paper we prove the time-domain boundedness for noise-to-state exponentially stable systems, and further make an estimation of its lower bound function, which allows to answer the question that how long the solution of a stochastic noise-to-st ate exponentially stable system stays in the domain of attraction and what happens with it if it escapes from this region for a while. The results will complement the probability-domain boundedness of noise-to-state exponentially stable systems, and provide a new insight into noise-to-state exponential stability.
Designing a static state-feedback controller subject to structural constraint achieving asymptotic stability is a relevant problem with many applications, including network decentralized control, coordinated control, and sparse feedback design. Lever aging on the Projection Lemma, this work presents a new solution to a class of state-feedback control problems, in which the controller is constrained to belong to a given linear space. We show through extensive discussion and numerical examples that our approach leads to several advantages with respect to existing methods: first, it is computationally efficient; second, it is less conservative than previous methods, since it relaxes the requirement of restricting the Lyapunov matrix to a block-diagonal form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا