ترغب بنشر مسار تعليمي؟ اضغط هنا

$mathbb{A}^2$ -Fibrations between affine spaces are trivial $mathbb{A}^2$-bundles

53   0   0.0 ( 0 )
 نشر من قبل Adrien Dubouloz
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Adrien Dubouloz




اسأل ChatGPT حول البحث

We give a criterion for a flat fibration with affine plane fibers over a smooth scheme defined over a field of characteristic zero to be a Zariski locally trivial $mathbb{A}^2$-bundle. An application is a positive answer to a version of the Dolgachev-Weisfeiler Conjecture for such fibrations: a flat fibration $mathbb{A}^m$ $rightarrow$ $mathbb{A}^n$ with all fibers isomorphic to $mathbb{A}^2$ is the trivial $mathbb{A}^2$-bundle.



قيم البحث

اقرأ أيضاً

In this paper we characterize the rank two vector bundles on $mathbb{P}^2$ which are invariant under the actions of the parabolic subgroups $G_p:=mathrm{Stab}_p(mathrm{PGL}(3))$ fixing a point in the projective plane, $G_L:=mathrm{Stab}_L(mathrm{PGL} (3))$ fixing a line, and when $pin L$, the Borel subgroup $mathbf{B} = G_p cap G_L$ of $mathrm{PGL}(3)$. Moreover, we prove that the geometrical configuration of the jumping locus induced by the invariance does not, on the other hand, characterize the invariance itself. Indeed, we find infinite families that are almost uniform but not almost homogeneous.
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0 $ and $Sigma_1$ of irreducible components of the spaces $mathcal{B}(e,n)$, for $e=0$ and $e=-1$, respectively. General bundles of these components are obtained as cohomology sheaves of monads, the middle term of which is a rank 4 symplectic instanton bundle in case $e=0$, respectively, twisted symplectic bundle in case $e=-1$. We show that the series $Sigma_0$ contains components for all big enough values of $n$ (more precisely, at least for $nge146$). $Sigma_0$ yields the next example, after the series of instanton components, of an infinite series of components of $mathcal{B}(0,n)$ satisfying this property.
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of th e second Chern class $n$ on the projective 3-space. The generalized null correlation bundles constituting open dense subsets of these components are defined as cohomology bundles of monads whose members are direct sums of line bundles of degrees depending on nonnegative integers $a,b,c$, where $bge a$ and $c>a+b$. We show that, in the wide range when $c>2a+b-e, b>a, (e,a) e(0,0)$, the Ein components are rational, and in the remaining cases they are at least stably rational. As a consequence, the union of the spaces $M(e,n)$ over all $nge1$ contains an infinite series of rational components for both $e=0$ and $e=-1$. Explicit constructions of rationality of Ein components under the above conditions on $e,a,b,c$ and, respectively, of their stable rationality in the remaining cases, are given. In the case of rationality, we construct universal families of generalized null correlation bundles over certain open subsets of Ein components showing that these subsets are fine moduli spaces. As a by-product of our construction, for $c_1=0$ and $n$ even, they provide, perhaps the first known, examples of fine moduli spaces not satisfying the condition $n$ is odd, which is a usual sufficient condition for fineness.
We describe new components of the Gieseker--Maruyama moduli scheme $mathcal{M}(n)$ of semistable rank 2 sheaves $E$ on $mathbb{P}^3$ with $c_1(E)=0$, $c_2(E)=n$ and $c_3(E)=0$ whose generic point corresponds to non locally free sheaves. We show that such components grow in number as $n$ grows, and discuss how they intersect the instanton component. As an application, we prove that $mathcal{M}(2)$ is connected, and identify a connected subscheme of $mathcal{M}(3)$ consisting of 7 irreducible components.
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification str uctures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا