ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Sextic Superpotential and $B-L$ violation in NMSGUT

108   0   0.0 ( 0 )
 نشر من قبل Ram Lal Awasthi
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We list operators of the superpotential of the effective MSSM that emerges from the NMSGUT up to sextic degree. We give illustrative expressions for the coefficients in terms of NMSGUT parameters. We also estimate the impact of GUT scale threshold corrections on these effective operators in view of the demonstration that $B$ violation via quartic superpotential terms can be suppressed to acceptable levels after including such corrections in the NMSGUT. We find a novel $B, B-L$ violating quintic operator that leads to the decay mode $nto e^- K^+$. We also remark that the threshold corrections to the Type I seesaw mechanism make the deviation of right handed neutrino masses from the GUT scale more natural while Type II seesaw neutrino masses, which earlier tended to utterly negligible receive threshold enhancement. Our results are of relevance for analyzing $B-L$ violating operator based, sphaleron safe, Baryogenesis.

قيم البحث

اقرأ أيضاً

In order to address the baryon asymmetry in the Universe one needs to understand the origin of baryon (B) and lepton (L) number violation. In this article, we discuss the mechanism of baryogenesis via leptogenesis to explain the matter-antimatter asy mmetry in theories with spontaneous breaking of baryon and lepton number. In this context, a lepton asymmetry is generated through the out-of-equilibrium decays of right-handed neutrinos at the high-scale, while local baryon number must be broken below the multi-TeV scale to satisfy the cosmological bounds on the dark matter relic density. We demonstrate how the lepton asymmetry generated via leptogenesis can be converted in two different ways: a) in the theory predicting Majorana dark matter the lepton asymmetry is converted into a baryon asymmetry, and b) in the theory with Dirac dark matter the decays of right-handed neutrinos can generate lepton and dark matter asymmetries that are then partially converted into a baryon asymmetry. Consequently, we show how to explain the matter-antimatter asymmetry, the dark matter relic density and neutrino masses in theories for local baryon and lepton number.
Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV ), without inducing rapid nucleon decay. These models feature an approximate $Z_2^e times Z_2^mu times Z_2^tau$ flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric $L L E^c$ couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through $N rightarrow K e mu u$ and $n rightarrow e mu u$; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced $tilde{ u} rightarrow mu e$ decays, which evade many existing collider searches for RPV supersymmetry.
We have investigated the effects of unparticles in decays $B to l u$. It is found that the direct CP violation in the decays, which is zero in SM, can show up due to the CP conserving phase intrinsic in unparticle physics. For $l=tau$, the direct CP asymmetry can reach 30% for the scalar unparticle contribution, and 100% for the longitudinal vector unparticle contribution under the constraints of ${rm Br}(Btotau u)$ and $ u e$ elastic scattering. If both unparticle-lepton coupling universality and unparticle-quark coupling universality are assumed the constraint from $Br(pito mu u)$ leads that the direct CP violation in $Bto l u$ can only reach at most 8% and 1% for scalar and vector unparticle contributions respectively if $d_{cal U} < 2$. If the direct CP violation is observed in the future it would give strong evidence for the existence of unparticle stuff.
293 - T. Huber , E. Lunghi , M. Misiak 2005
The B -> X_s l+ l- decay rate is known at the next-to-next-to-leading order in QCD. It is proportional to alpha_em (mu)^2 and has a +- 4% scale uncertainty before including the O(alpha_em log(M_W^2/m_b^2)) electromagnetic corrections. We evaluate the se corrections and confirm the earlier findings of Bobeth et al. >. Furthermore, we complete the calculation of logarithmically enhanced electromagnetic effects by including also QED corrections to the matrix elements of four-fermion operators. Such corrections contain a collinear logarithm log(m_b^2/m_l^2) that survives integration over the low dilepton invariant mass region 1 GeV^2 < q^2 < 6 GeV^2 and enhances the integrated decay rate in this domain. For the low-q^2 integrated branching ratio in the muonic case, we find B (B -> X_s mu^+mu^-) = (1.59 +- 0.11) 10^(-6), where the error includes the parametric and perturbative uncertainties only. For B (B -> X_s e^+e^-), in the current BaBar and Belle setups, the logarithm of the lepton mass gets replaced by angular cut parameters and the integrated branching ratio for the electrons is expected to be close to that for the muons.
Superheavy threshold corrections to the matching condition between matter Yukawa couplings of the effective Minimal Supersymmetric Standard Model (MSSM) and the New Minimal Supersymmetric (SO(10)) GUT(NMSGUT) provide a novel and generic mechanism for reducing the long standing and generically problematic operator dimension 5 Baryon decay rates. In suitable regions of the parameter space strong wave function renormalization of the effective MSSM Higgs doublets due to the large number of heavy fields can take the wave function renormalization of the MSSM Higgs field close to the dissolution value ($Z_{H,overline{H}}=0$). Rescaling to canonical kinetic terms lowers the SO(10) Yukawas required to match the MSSM fermion data. Since the same Yukawas determine the dimension 5 B violation operator coefficients, the associated rates can be suppressed to levels compatible with current limits. Including these threshold effects also relaxes the constraint $ y_b-y_tausimeq y_s-y_mu$ operative between $textbf{10} -textbf{120} $ plet generated tree level MSSM matter fermion Yukawas $y_f$. We exhibit accurate fits of the MSSM fermion mass-mixing data in terms of NMSGUT superpotential couplings and 5 independent soft Susy breaking parameters specified at $10^{16.25},$ GeV with the claimed suppression of Baryon decay rates. As before, our s-spectra are of the mini split supersymmetry type with large $|A_0|,mu,m_{H,overline H} > 100,,$ TeV, light gauginos and normal s-hierarchy. Large $A_0,mu$ and soft masses allow significant deviation from the canonical GUT gaugino mass ratios and ensure vacuum safety. Even without optimization, prominent candidates for BSM discovery such as the muon magnetic anomaly, $brightarrow sgamma$ and Lepto-genesis CP violation emerge in the preferred ball park.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا