ترغب بنشر مسار تعليمي؟ اضغط هنا

HI, star formation and tidal dwarf candidate in the Arp 305 system

68   0   0.0 ( 0 )
 نشر من قبل Chandreyee Sengupta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from our Giant Metrewave Radio Telescope (GMRT) HI observations of the Arp 305 system. The system consists of two interacting spiral galaxies NGC 4016 and NGC 4017, a large amount of resultant tidal debris and a prominent tidal dwarf galaxy (TDG) candidate projected within the tidal bridge between the two principal galaxies. Our higher resolution GMRT HI mapping, compared to previous observations, allowed detailed study of smaller scale features. Our HI analysis supports the conclusion in Hancock et al. (2009) that the most recent encounter between the pair occurred $sim$ 4 $times$ 10$^8$ yrs ago. The GMRT observations also show HI features near NGC 4017 which may be remnants of an earlier encounter between the two galaxies. The HI properties of the Bridge TDG candidate include: M(HI) $sim$ 6.6 $times$ 10$^8$ msolar and V(HI) = 3500$pm$ 7 km/s, which is in good agreement with the velocities of the parent galaxies. Additionally the TDGs HI linewidth of 30 km/s and a modest velocity gradient together with its SFR of 0.2 msolar/yr add to the evidence favouring the bridge candidate being a genuine TDG. The Bridge TDGs textit{Spitzer} 3.6 $mu$m and 4.5 $mu$m counterparts with a [3.6]--[4.5] colour $sim$ -0.2 mag suggests stellar debris may have seeded its formation. Future spectroscopic observations could confirm this formation scenario and provide the metallicity which is a key criteria for the validation for TDG candidates.



قيم البحث

اقرأ أيضاً

We present results from our Giant Metrewave Radio Telescope (GMRT) HI observations of the interacting pair Arp 202 (NGC 2719 and NGC 2719A). Earlier deep UV(GALEX) observations of this system revealed a tidal tail like extension with a diffuse object towards its end, proposed as a tidal dwarf galaxy (TDG) candidate. We detect HI emission from the Arp 202 system, including HI counterparts for the tidal tail and the TDG candidate. Our GMRT HI morphological and kinematic results clearly link the HI tidal tail and the HI TDG counterparts to the interaction between NGC 2719 and NGC 2719A, thus strengthening the case for the TDG. The Arp 202 TDG candidate belongs to a small group of TDG candidates with extremely blue colours. In order to gain a better understanding of this group we carried out a comparative study of their properties from the available data. We find that HI (and probably stellar) masses of this extremely blue group are similar to the lowest HI mass TDGs in the literature. However the number of such blue TDG candidates examined so far is too small to conclude whether or not their properties justify them to be considered as a subgroup of TDGs.
We present results from our Giant Metrewave Radio Telescope (GMRT) HI, Himalayan Chandra Telescope (HCT) Halpha, 1m Sampurnanand Telescope (ST) and 1.3m Devasthal Fast Optical Telescope (DFOT) deep optical observations of NGC 7805/6 (Arp 112) system to test KUG 2359+311s tidal dwarf galaxy (TDG) candidacy and explore the properties of the interacting system. Our GMRT HI map shows no HI detection associated with KUG 2359+311, nor any HI tail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system. Our HCT Halpha image on the other hand, shows strong detections in KUG 2359+311, with net SFR ~ 0.035$pm 0.009 {rm M}_{odot},{rm yr}^{-1}$. The Halpha data constrains the redshift of KUG 2359+311 to $0.00 le z le 0.043$, compared to the redshift of NGC 7806 of ~ 0.015. TDGs detected to date have all been HI rich, and displayed HI, ionised gas and stellar tidal debris trails (bridges or tails) linking them to their parent systems. But neither our HI data nor our optical images, while three magnitudes deeper than SDSS, reveal tidal trail connecting KUG 2359+311 to NGC 7805/6. Lack of HI , presence of an old stellar population, ongoing star formation, reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG. It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system. Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.
Context: Pre-merger interactions between galaxies can induce significant changes in the morphologies and kinematics of the stellar and ISM components. Large amounts of gas and stars are often found to be disturbed or displaced as tidal debris. This d ebris then evolves, sometimes forming stars and occasionally tidal dwarf galaxies. Here we present results from our HI study of Arp 65, an interacting pair hosting extended HI tidal debris. Aims: In an effort to understand the evolution of tidal debris produced by interacting pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we are mapping HI in a sample of interacting galaxy pairs. The Arp 65 pair is one of them. Methods: Our resolved HI 21 cm line survey is being carried out using the Giant Metrewave Radio Telescope (GMRT). We used our HI survey data as well as available SDSS optical, Spitzer infra-red and GALEX UV data to study the evolution of the tidal debris and the correlation of HI with the star-forming regions within it. Results: In Arp 65 we see a high impact pre-merger interaction involving a pair of massive galaxies (NGC 90 and NGC 93) that have a stellar mass ratio of ~ 1:3. The interaction, which probably occurred ~ 1.0 -- 2.5 $times$ 10$^8$ yr ago, appears to have displaced a large fraction of the HI in NGC 90 (including the highest column density HI) beyond its optical disk. We also find extended ongoing star formation in the outer disk of NGC 90. In the major star-forming regions, we find the HI column densities to be ~ 4.7 $times$ 10$^{20}$ cm$^{-2}$ or lower. But no signature of star formation was found in the highest column density HI debris, SE of NGC 90. This indicates conditions within the highest column density HI debris remain hostile to star formation and it reaffirms that high HI column densities may be a necessary but not sufficient criterion for star formation.
We report the discovery of active star formation in the HI cloud associated with the interacting Seyfert system NGC 3227/NGC 3226 that was originally identified as a candidate tidal dwarf galaxy (TDG) by Mundell et al. and that we name J1023+1952. We present the results of broad-band BRIJHK and ultraviolet imaging that show the HI cloud is associated with massive on-going star formation seen as a cluster of blue knots (M_B < -15.5 mag) surrounded by a diffuse ultraviolet halo and co-spatial with a ridge of high column density neutral hydrogen its southern half. We also detect Ha emission from the knots with a flux density corresponding to a star-formation rate of SFR~0.011 Msun per yr. Although J1023+1952 spatially overlaps the edge of the disk of NGC 3227, it has a mean HI velocity 150 km/s higher than that of NGC 3227 so is kinematically distinct; comparison of ionized and neutral gas kinematics in the star-forming region show closely matched velocities, providing strong evidence that the knots are embedded in J1023+1952 and do not merely lie behind in the disk of NGC 3227, thus confirming J1023+1952 as a gas-rich dwarf galaxy. We discuss two scenarios for the origin of J1023+1952; as a third, pre-existing dwarf galaxy involved in the interaction with NGC 3227 and NGC 3226, or a newly-forming dwarf galaxy condensing out of the tidal debris removed from the gaseous disk of NGC 3227. Given the lack of a detectable old stellar population, a tidal origin is more likely. If J1023+1952 is a bound object forming from returning gaseous tidal tail material, we infer a dynamically young age similar to its star-formation age, and suggests it is in the earliest stages of TDG evolution. Whatever the origin of J1023+1952 we suggest that its star formation is shock-triggered by collapsing tidal debris. (Abridged)
390 - B. W. Holwerda 2013
Scale-invariant morphology parameters applied to atomic hydrogen maps (HI) of galaxies can be used to quantify the effects of tidal interaction or star-formation on the ISM. Here we apply these parameters, Concentration, Asymmetry, Smoothness, Gini, M20, and the GM parameter, to two public surveys of nearby dwarf galaxies, the VLA-ANGST and LITTLE-THINGS survey, to explore whether tidal interaction or the ongoing or past star-formation is a dominant force shaping the HI disk of these dwarfs. Previously, HI morphological criteria were identified for ongoing spiral-spiral interactions. When we apply these to the Irregular dwarf population, they either select almost all or none of the population. We find that only the Asymmetry-based criteria can be used to identify very isolated dwarfs (i.e., these have a low tidal indication). Otherwise, there is little or no relation between the level of tidal interaction and the HI morphology. We compare the HI morphology to three star-formation rates based on either Halpha, FUV or the resolved stellar population, probing different star-formation time-scales. The HI morphology parameters that trace the inequality of the distribution, the Gini, GM, and M20 parameters, correlate weakly with all these star-formation rates. This is in line with the picture that local physics dominates the ISM appearance and not tidal effects. Finally, we compare the SDSS measures of star-formation and stellar mass to the HI morphological parameters for all four HI surveys. In the two lower-resolution HI surveys (12), there is no relation between star-formation measures and HI morphology. The morphology of the two high-resolution HI surveys (6), the Asymmetry, Smoothness, Gini, M20, and GM, do show a link to the total star-formation, but a weak one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا