ترغب بنشر مسار تعليمي؟ اضغط هنا

On LoRaWAN Scalability: Empirical Evaluation of Susceptibility to Inter-Network Interference

69   0   0.0 ( 0 )
 نشر من قبل Konstantin Mikhaylov
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Appearing on the stage quite recently, the Low Power Wide Area Networks (LPWANs) are currently getting much of attention. In the current paper we study the susceptibility of one LPWAN technology, namely LoRaWAN, to the inter-network interferences. By means of excessive empirical measurements employing the certified commercial transceivers, we characterize the effect of modulation coding schemes (known for LoRaWAN as data rates (DRs)) of a transmitter and an interferer on probability of successful packet delivery while operating in EU 868 MHz band. We show that in reality the transmissions with different DRs in the same frequency channel can negatively affect each other and that the high DRs are influenced by interferences more severely than the low ones. Also, we show that the LoRa-modulated DRs are affected by the interferences much less than the FSK-modulated one. Importantly, the presented results provide insight into the network-level operation of the LoRa LPWAN technology in general, and its scalability potential in particular. The results can also be used as a reference for simulations and analyses or for defining the communication parameters for real-life applications.

قيم البحث

اقرأ أيضاً

In this paper we advocate the use of device-to-device (D2D) communications in a LoRaWAN Low Power Wide Area Network (LPWAN). After overviewing the critical features of the LoRaWAN technology, we discuss the pros and cons of enabling the D2D communica tions for it. Subsequently we propose a network-assisted D2D communications protocol and show its feasibility by implementing it on top of a LoRaWAN-certified commercial transceiver. The conducted experiments show the performance of the proposed D2D communications protocol and enable us to assess its performance. More precisely, we show that the D2D communications can reduce the time and energy for data transfer by 6 to 20 times compared to conventional LoRaWAN data transfer mechanisms. In addition, the use of D2D communications may have a positive effect on the network by enabling spatial re-use of the frequency resources. The proposed LoRaWAN D2D communications can be used for a wide variety of applications requiring high coverage, e.g. use cases in distributed smart grid deployments for management and trading.
LoRaWAN is a popular low power wide area network technology widely used in many scenarios, such as environmental monitoring and smart cities. Different applications demand various quality of service (QoS), and their service within a single network re quires special solutions for QoS provision. We consider the problem of QoS provision in heterogeneous LoRaWAN networks that consist of several groups of devices that require different packet loss rate (PLR). To solve this problem, we develop a mathematical model that can find the PLR distribution in a LoRaWAN network. With the model, we show that the PLR can vary significantly, and it is wrong to consider only the average PLR for the QoS provision. Finally, we develop an algorithm for assigning modulation and coding schemes to end-devices that provides PLRs below the required thresholds.
In this paper, we address inter-beam inter-cell interference mitigation in 5G networks that employ millimeter-wave (mmWave), beamforming and non-orthogonal multiple access (NOMA) techniques. Those techniques play a key role in improving network capac ity and spectral efficiency by multiplexing users on both spatial and power domains. In addition, the coverage area of multiple beams from different cells can intersect, allowing more flexibility in user-cell association. However, the intersection of coverage areas also implies increased inter-beam inter-cell interference, i.e. interference among beams formed by nearby cells. Therefore, joint user-cell association and inter-beam power allocation stand as a promising solution to mitigate inter-beam, inter-cell interference. In this paper, we consider a 5G mmWave network and propose a reinforcement learning algorithm to perform joint user-cell association and inter-beam power allocation to maximize the sum rate of the network. The proposed algorithm is compared to a uniform power allocation that equally divides power among beams per cell. Simulation results present a performance enhancement of 13-30% in networks sum-rate corresponding to the lowest and highest traffic loads, respectively.
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi on. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
In this document, we prove the convergence of the model proposed in [1], which aims at estimating the LoRaWAN network performance in a single-gateway scenario. First, we provide an analytical proof of the existence of a fixed point solution for such a system. Then, we report experimental results, showing that the system of the two inter-dependent equations provided by the model can be solved through fixed-point iterations, and that a limited number of iterations is enough to reach convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا