ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe$_{2}$As$_{2}$

218   0   0.0 ( 0 )
 نشر من قبل Nicholas J. Curro
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom [1-4]. The nematic state observed in many of these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion [5-7]. A more subtle and much less explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. Here, we present a new technique enabling nuclear magnetic resonance under precise tunable strain control, which reveals that upon application of a tetragonal symmetry-breaking strain field, the magnetic fluctuation spectrum in the paramagnetic phase of BaFe$_{2}$As$_{2}$ also acquires an anisotropic response in spin-space. Our results unveil a hitherto uncharted internal spin structure of the nematic order parameter, indicating that similar to liquid crystals, electronic nematic materials may offer a novel route to magneto-mechanical control.

قيم البحث

اقرأ أيضاً

The hallmark of nematic order in iron-based superconductors is a resistivity anisotropy but it is unclear to which extent quasiparticle dispersions, lifetimes and coherence contribute. While the lifted degeneracy of the Fe $d_{xz}$ and $d_{yz}$ dispe rsions has been studied extensively, only little is known about the two other factors. Here, we combine in situ strain tuning with ARPES and study the nematic response of the spectral weight in BaFe$_2$As$_2$. The symmetry analysis of the ARPES spectra demonstrates that the $d_{xz}$ band gains quasiparticle spectral weight compared to the $d_{yz}$ band for negative antisymmetric strain $Delta epsilon_{yy}$ suggesting the same response inside the nematic phase. Our results are compatible with a different coherence of the $d_{xz}$ and $d_{yz}$ orbital within a Hunds metal picture. We also discuss the influence of orbital mixing.
We present the strain and temperature dependence of an anomalous nematic phase in optimally doped BaFe$_2$(As,P)$_2$. Polarized ultrafast optical measurements reveal broken 4-fold rotational symmetry in a temperature range above $T_c$ in which bulk p robes do not detect a phase transition. Using ultrafast microscopy, we find that the magnitude and sign of this nematicity vary on a ${50{-}100}~mu$m length scale, and the temperature at which it onsets ranges from 40 K near a domain boundary to 60 K deep within a domain. Scanning Laue microdiffraction maps of local strain at room temperature indicate that the nematic order appears most strongly in regions of weak, isotropic strain. These results indicate that nematic order arises in a genuine phase transition rather than by enhancement of local anisotropy by a strong nematic susceptibility. We interpret our results in the context of a proposed surface nematic phase.
The perovskite rare-earth titanates are model Mott insulators with magnetic ground states that are sensitive to structural distortions. These distortions couple strongly to the orbital degrees of freedom and, in principle, it should be possible to tu ne the superexchange and to manipulate the Curie temperature ($T_C$) with strain. We investigate the representative system (Y,La,Ca)TiO$_3$, which exhibits low crystallographic symmetry and no structural instabilities. From magnetic susceptibility measurements of $T_C$, we demonstrate direct, reversible and continuous control of ferromagnetism by influencing the TiO$_6$ octahedral tilts and rotations with uniaxial strain. The relative change in $T_C$ as a function of strain is well described by textit{ab initio} calculations, which provides detailed understanding of the complex interactions among structural, orbital and magnetic properties in these compounds. The demonstrated manipulation of octahedral distortions opens up far-reaching possibilities for investigations of electron-lattice coupling, competing ground states and magnetic quantum phase transitions in a wide range of quantum materials.
Inelastic neutron scattering was employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe$_{0.953}$Co$_{0.047}$)$_{2}$As$_{2}$. These materials are ideal to study the paramagnetic-nematic state, sinc e the nematic order, signaled by the tetragonal-to-orthorhombic transition at $T_{{rm S}}$, sets in well above the stripe antiferromagnetic ordering at $T_{{rm N}}$. We find that the temperature-dependent dynamic susceptibility displays an anomaly at $T_{{rm S}}$ followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. Our findings can be consistently described by a model that attributes the structural/nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.
We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe$_{2-x}$Ni$_x$As$_2$ by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be iden tified through the measurements along the (110) direction as studied previously, quantum and thermal critical fluctuations cannot be distinguished due to similar Curie-Weiss-like behaviors. Here we find that a sizable pressure-dependent resistivity along the (100) direction is present in all doping levels, which is against the simple picture of an Ising-type nematic model. The signal along the (100) direction becomes maximum at optimal doping, suggesting that it is associated with nematic quantum critical fluctuations. Our results indicate that thermal fluctuations from striped antiferromagnetic order dominate the underdoped regime along the (110) direction. We argue that either there is a strong coupling between the quantum critical fluctuations and the fermions, or more exotically, a higher symmetry may be present around optimal doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا