ﻻ يوجد ملخص باللغة العربية
Recently revealed differences in planets around M dwarf vs. solar-type stars could arise from differences in their primordial disks, and surveys of T Tauri stars find a correlation between stellar mass and disk mass. Minimum disks have been reconstructed for the Solar System and solar-type stars and here this exercise is performed for M dwarfs using Kepler-detected planets. Distribution of planet mass between current orbits produces a disk with total mass of ~0.009Msun and a power-law profile with index 2.2. Disk reconstruction from the output of a forward model of planet formation indicates that the effect of detection bias on disk profile is slight and that the observed scatter in planet masses and semi-major axes is consistent with a universal disk profile. This nominal M dwarf disk is more centrally concentrated than those inferred around the solar-type stars observed by Kepler, and the mass surface density beyond 0.02 AU is sufficient for in situ accretion of planets as single embryos. The mass of refractory solids within 0.5 AU is 5.6Mearth compared to 4Mearth for solar-type stars, in contrast with the trend with total disk mass. The total solids beyond 0.5 AU is sufficient for the core of at least one giant planet.
While brown dwarfs show similarities with stars in their early life, their spin evolution is much more akin to that of planets. We have used lightcurves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-
The planet-metallicity correlation serves as a potential link between exoplanet systems as we observe them today and the effects of bulk composition on the planet formation process. Many observers have noted a tendency for Jovian planets to form arou
We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 ($V = 8.9$ mag, $M = 0.58 pm 0.08$ M$_{odot}$), a bright M0.0V star at
New instruments and telescopes, such as SPIRou, CARMENES and TESS, will increase manyfold the number of known planets orbiting M dwarfs. To guide future radio observations, we estimate radio emission from known M-dwarf planets using the empirical rad
We present radial velocity (RV) measurements of our sample of 40 M dwarfs from our planet search programme with VLT+UVES begun in 2000. Although with our RV precision down to 2 - 2.5 m/s and timebase line of up to 7 years, we are capable of finding p