ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraint on the Ground-state Mass of 21Al and Three-Nucleon Forces

111   0   0.0 ( 0 )
 نشر من قبل Xinzhi Teng
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fragmentation cross section of $^{28}$Si + $^{9}$Be reaction at 75.8 MeV/u was analyzed for studying the decay mode of single-proton emission in $^{21}$Al (the proton-rich nucleus with neutron closed-shell of $N = 8$ and $T_z = -5/2$). With the comparison between the measured fragmentation cross section and the theoretical cross section produced by EPAX3.1a for the observed nuclei (i.e. $^{20}$Mg, $^{21}$Al and $^{22}$Si), the expected yield for a particle stable $^{21}$Al was estimated. With the exponential decay law, an upper limit of half-life of $13$ ns was determined. Using the single-proton penetration model, the upper limit of single-proton separation energy of $-105$ keV was deduced. This deduced mass limit agrees with the microscopic calculation based on nucleon-nucleon (NN) + three-nucleon (3N) forces in $sdf_{7/2}p_{3/2}$ valence space, which indicates the importance of 3N forces in $^{21}$Al.

قيم البحث

اقرأ أيضاً

433 - X. X. Xu , C. J. Lin , L. J. Sun 2016
The decay of the proton-rich nucleus $^{22}$Si was studied by a silicon array coupled with germanium clover detectors. Nine charged-particle groups are observed and most of them are recognized as $beta$-delayed proton emission. A charged-particle gro up at 5600 keV is identified experimentally as $beta$-delayed two-proton emission from the isobaric analog state of $^{22}$Al. Another charged-particle emission without any $beta$ particle at the low energy less than 300 keV is observed. The half-life of $^{22}$Si is determined as 27.5 (18) ms. The experimental results of $beta$-decay of $^{22}$Si are compared and in nice agreement with shell-model calculations. The mass excess of the ground state of $^{22}$Si deduced from the experimental data shows that three-nucleon (3N) forces with repulsive contributions have significant effects on nuclei near the proton drip line.
199 - M. R. Robilotta 2006
Chiral symmetry allows two and three nucleon forces to be treated in a single theoretical framework. We discuss two new features of this research programme at $cO(q^4)$ and the consistency of the overall chiral picture.
Classes of two-nucleon ($2N$) contact interactions are developed in configuration space at leading order (LO), next-to-leading order (NLO), and next-to-next-to-next-to-leading order (N3LO) by fitting the experimental singlet $np$ scattering length an d deuteron binding energy at LO, and $np$ and $pp$ scattering data in the laboratory-energy range 0--15 MeV at NLO and 0--25 MeV at N3LO. These interactions are regularized by including two Gaussian cutoffs, one for $T,$=$,0$ and the other for $T,$=$,1$ channels. The cutoffs are taken to vary in the ranges $R_0,$=$(1.5$--2.3) fm and $R_1,$=$(1.5$--3.0) fm. The 780 (1,100) data points up to 15 (25) MeV energy, primarily differential cross sections, are fitted by the NLO (N3LO) models with a $chi^2$/datum about 1.7 or less (well below 1.5), when harder cutoff values are adopted. As a first application, we report results for the binding energies of nuclei with mass numbers $A,$=$,3$--6 and 16 obtained with selected LO and NLO $2N$ models both by themselves as well as in combination with a LO three-nucleon ($3N$) contact interaction. The latter is characterized by a single low-energy constant that is fixed to reproduce the experimental $^3$H binding energy. The inclusion of the $3N$ interaction largely removes the sensitivity to cutoff variations in the few-nucleon systems and leads to predictions for the $^3$He and $^4$He binding energies that cluster around 7.8 MeV and 30 MeV, respectively. However, in $^{16}$O this cutoff sensitivity remains rather strong. Finally, predictions at LO only are also reported for medium-mass nuclei with $A,$=$,40$, 48, and 90.
101 - T. Miyagi , T. Abe , M. Kohno 2019
The ground-state energies and radii for $^{4}$He, $^{16}$O, and $^{40}$Ca are calculated with the unitary-model-operator approach (UMOA). In the present study, we employ the similarity renormalization group (SRG) evolved nucleon-nucleon ($NN$) and th ree-nucleon ($3N$) interactions based on the chiral effective field theory. This is the first UMOA calculation with both $NN$ and $3N$ interactions. The calculated ground-state energies and radii are consistent with the recent {it ab initio} results with the same interaction. We evaluate the expectation values with two- and three-body SRG evolved radius operators, in addition to those with the bare radius operator. With the aid of the higher-body evolution of radius operator, it is seen that the calculated radii tend to be SRG resolution-scale independent. We find that the SRG evolution gives minor modifications for the radius operator.
410 - S. Binder , A. Calci , E. Epelbaum 2015
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors, to study nucleon-deuteron (Nd) scattering and selected low-energy observables in 3H, 4He, and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon force contributions agree well with expectations based on Weinbergs power counting. We identify the energy range in elastic Nd scattering best suited to study three-nucleon force effects and estimate the achievable accuracy of theoretical predictions for various observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا