ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature transport properties of pyrolytic graphite sheet

86   0   0.0 ( 0 )
 نشر من قبل Sachiko Nakamura Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have made thermal and electrical transport measurements of uncompressed pyrolytic graphite sheet (uPGS), a mass-produced thin graphite sheet with various thicknesses between 10 and 100 {mu}m, at temperatures between 2 and 300 K. Compared to exfoliated graphite sheets like Grafoil, uPGS has much higher conductivities by an order of magnitude because of its high crystallinity confirmed by X-ray diffraction and Raman spectroscopy. This material is advantageous as a thermal link of light weight in a wide temperature range particularly above 60 K where the thermal conductivity is much higher than common thermal conductors such as copper and aluminum alloys. We also found a general relationship between thermal and electrical conductivities in graphite-based materials which have highly anisotropic conductivities. This would be useful to estimate thermal conductance of a cryogenic part made of these materials from its electrical conductance more easily measurable at low temperature.

قيم البحث

اقرأ أيضاً

We have measured surface morphology and gas adsorption characteristics of uncompressed pyrolytic graphite sheet (uPGS) which is a candidate substrate for AC and DC superflow experiments on monolayers of 4He below T = 1 K. The PGS is a mass-produced t hin graphite sheet with various thicknesses between 10 and 100 {mu}m. We employed a variety of measuring techniques such as imagings with optical microscope, SEM and STM, Raman spectroscopy, and adsorption isotherm. PGS has smooth and atomically-flat external surfaces with high crystallinity. Although the specific surface area (<0.1 m$^2$/g) is rather small, by making use of its smooth external surface, the thinnest uPGS of 10 {mu}m thick is found to be suitable for the superflow experiments on the strictly two-dimensional helium systems.
320 - M. J. Webb , P. Palmgren , P. Pal 2011
A simple and effective stepwise-method has been developed to remove defects from the top graphene layers of highly orientated pyrolytic graphite. Using a combination of ozone exposure and moderately high temperature we have shown that a defect-rich g raphite surface can be modified to generate a graphene-like surface containing a negligible amount of oxygen, hydrogen and sp3 carbon. We report definitive x-ray photoelectron and x-ray absorption spectroscopy analysis after each stage of the process, suggest a mechanism by which the modification occurs and propose it as a route towards the preparation or manipulation of pristine graphene samples.
210 - Zhiming Wang , Feng Xu , Chao Lu 2008
The transport properties of highly oriented pyrolitic graphite (HOPG) and polycrystal graphite have been studied. The electric conductivity of HOPG is several times larger than that of the polycrystal graphite. Along with the large magnetoresistances (MR), the polycrystal graphite show the accordant semiconductor-like character in a wide temperature (roughly range from 20K to 120K) under 0, 4, 8, 12 T applied magnetic field, while the magnetic-field-induced metal-semiconductor-like transition was only found in HOPG. The difference of transport properties originates from the Coulomb interaction quasipartical in HOPG graphite layers in contrast with the grain boundary scattering in the polycrystal graphite.
The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an a brupt decrease at the metamagnetic transition point, $T = T_m$ between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for $T geq 0$ K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of $T_m$, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement.
A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Rama n spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 {mu}m were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا