ﻻ يوجد ملخص باللغة العربية
We present a sample of $X$-ray selected candidate black holes in 51 low mass galaxies with $zle 0.055$ {and mass up to $10^{10}$ M$_{odot}$} obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalogue. {We have also searched in the available catalogues for radio counterparts of the black hole candidates and find that 19 of the previously selected sources have also a radio counterpart.} Our results show that about $37%$ of the galaxies of our sample host { an $X$-ray source} (associated to a radio counterpart) spatially coincident with the galaxy center, in agreement with { other recent works}. For these {it nuclear} sources, the $X$-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes which results to be in the range $10^{4}-2times10^{8}$ M$_{odot}$ (with median value of $simeq 3times 10^7$ M$_{odot}$ and eight candidates having mass below $10^{7}$ M$_{odot}$). This result, while suggesting that $X$-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes even more urgent to explain how such massive objects formed in galaxies. {Of course, dedicated follow-up observations both in the $X$-ray and radio bands, as well as in the optical, are necessary in order to confirm our results
A new sample of 204 low-mass black holes (LMBHs) in active galactic nuclei (AGNs) is presented with black hole masses in the range of (1-20) * 10^5 M_sun. The AGNs are selected from a systematic search among galaxies in the Seventh Data Release (DR 7
We present an expanded sample of low-mass black holes (BHs) found in galactic nuclei. Using standard virial mass techniques to estimate BH masses, we select from the Fourth Data Release of the Sloan Digital Sky Survey all broad-line active galaxies w
During the last ~50 years, the population of black hole candidates in X-ray binaries has increased considerably with 59 Galactic objects detected in transient low-mass X-ray binaries, plus a few in persistent systems (including ~5 extragalactic binar
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows it
The ngVLA will facilitate deep surveys capable of detecting the faint and compact signatures of accreting supermassive black holes (SMBHs) with masses below one million solar-masses hosted by low-mass ($< 10^9$ solar-masses) galaxies. This will provi