ترغب بنشر مسار تعليمي؟ اضغط هنا

Fano Resonance in a Subwavelength Mie-based Metamolecule with Split Ring Resonator

74   0   0.0 ( 0 )
 نشر من قبل Xiaobo Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we report a method of symmetry-breaking in an artificial Mie-based metamolecule. A Fano resonance with a Q factor of 96 is observed at microwave frequencies in a structure combining a split ring resonator (SRR) and a high-permittivity dielectric cube. Calculations indicate resonant frequency tunability will result from altering the cubes permittivity. The asymmetric spectrum is attributed to both constructive and destructive near-field interactions between the two distinct resonators. Experimental data and simulation results are in good agreement. The underlying physics is seen in field distribution and dipole analysis. This work substantiates an approach for the manipulation of Mie resonances which can potentially be utilized in light modulating and sensing.

قيم البحث

اقرأ أيضاً

Using polarization-resolved transient reflection spectroscopy, we investigate the ultrafast modulation of light interacting with a metasurface consisting of coherently vibrating nanophotonic meta-atoms in the form of U-shaped split-ring resonators, t hat exhibit co-localized optical and mechanical resonances. With a two-dimensional square-lattice array of these resonators formed of gold on a glass substrate, we monitor the visible-pump-pulse induced gigahertz oscillations in intensity of reflected linearly-polarized infrared probe light pulses, modulated by the resonators effectively acting as miniature tuning forks. A multimodal vibrational response involving the opening and closing motion of the split rings is detected in this way. Numerical simulations of the associated transient deformations and strain fields elucidate the complex nanomechanical dynamics contributing to the ultrafast optical modulation, and point to the role of acousto-plasmonic interactions through the opening and closing motion of the SRR gaps as the dominant effect. Applications include ultrafast acoustooptic modulator design and sensing.
We study the propagation of quasi-discrete microwave solitons in a nonlinear left-handed coplanar waveguide coupled with split ring resonators. By considering the relevant transmission line analogue, we derive a nonlinear lattice model which is studi ed analytically by means of a quasi-discrete approximation. We derive a nonlinear Schr{o}dinger equation, and find that the system supports bright envelope soliton solutions in a relatively wide subinterval of the left-handed frequency band. We perform systematic numerical simulations, in the framework of the nonlinear lattice model, to study the propagation properties of the quasi-discrete microwave solitons. Our numerical findings are in good agreement with the analytical predictions, and suggest that the predicted structures are quite robust and may be observed in experiments.
76 - S. T. Chui , Y. Zhang , Lei Xzhou 2008
We derived simple polynomial equations to determine the entire resonance spectra of split ring structures. For double stacking split rings made with flat wires, we showed that the resonance frequency depends linearly on the ring-ring separation. In p articular, we found that the wavelength of the lowest resonance mode can be made as large as the geometrical size of the ring for realistic experimental conditions, whereas for current systems this ratio is of the order of 10. Finite-difference-time-domain simulations on realistic structures verified the analytic predictions.
98 - Pingfan Gu , Qinghai Tan , Yi Wan 2019
Quantum interference gives rise to the asymmetric Fano resonance line shape when the final states of an electronic transition follows within a continuum of states and a discrete state, which has significant applications in optical switching and sensi ng. The resonant optical phenomena associated with Fano resonance have been observed by absorption spectra, Raman spectra, transmission spectra, etc., but have rarely been reported in photoluminescence (PL) spectroscopy. In this work, we performed spectroscopic studies on layered chromium thiophosphate (CrPS4), a promising ternary antiferromagnetic semiconductor with PL in near-infrared wavelength region and observed Fano resonance when CrPS4 experiences phase transition into the antiferromagnetic state below Neel temperature (38 K). The photoluminescence of the continuum states results from the d band transitions localized at Cr3+ ions, while the discrete state reaches saturation at high excitation power and can be enhanced by the external magnetic field, suggesting it is formed by an impurity level from extra atomic phosphorus. Our findings provide insights into the electronic transitions of CrPS4 and their connection to its intrinsic magnetic properties.
By using the stripline Microwave Vector Network Analyzer Ferromagnetic Resonance and Pulsed Inductive Microwave Magnetometry spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithog raphically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium-iron garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9 percent at 3 GHz. Theoretically, we propose an equivalent circuit model of an SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetization dynamics in the YIG film driven by the microwave currents in the SRR. The equivalent circuit model is in good agreement with the experiment. It provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in magnetically tunable metamaterials exploiting the strong coupling of magnons to microwave photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا