ترغب بنشر مسار تعليمي؟ اضغط هنا

Eichler cohomology and zeros of polynomials associated to derivatives of $L$-functions

114   0   0.0 ( 0 )
 نشر من قبل Larry Rolen
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, a number of papers have been devoted to the study of roots of period polynomials of modular forms. Here, we study cohomological analogues of the Eichler-Shimura period polynomials corresponding to higher $L$-derivatives. We state general conjectures about the locations of the roots of the full and odd parts of the polynomials, in analogy with the existing literature on period polynomials, and we also give numerical evidence that similar results hold for our higher derivative period polynomials in the case of cusp forms. We prove a special case of this conjecture in the case of Eisenstein series.



قيم البحث

اقرأ أيضاً

Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways to incorporate non-cuspidal modular forms and values of derivatives of $L$-functions into the same framework. We further review investigations of the location of zeros of the period polynomial as well as of its analogue for $L$-derivatives.
108 - Jiyou Li 2021
A conjecture of Le says that the Deligne polytope $Delta_d$ is generically ordinary if $pequiv 1 (!!bmod D(Delta_d))$, where $D(Delta_d)$ is a combinatorial constant determined by $Delta_d$. In this paper a counterexample is given to show that the conjecture is not true in general.
In this article we study the limiting empirical measure of zeros of higher derivatives for sequences of random polynomials. We show that these measures agree with the limiting empirical measure of zeros of corresponding random polynomials. Various mo dels of random polynomials are considered by introducing randomness through multiplying a factor with a random zero or removing a zero at random for a given sequence of deterministic polynomials. We also obtain similar results for random polynomials whose zeros are given by i.i.d. random variables. As an application, we show that these phenomenon appear for random polynomials whose zeros are given by the 2D Coulomb gas density.
157 - Dohoon Choi , Subong Lim 2012
Let $Gamma$ be a finitely generated Fuchsian group of the first kind which has at least one parabolic class. Eichler introduced a cohomology theory for Fuchsian groups, called as Eichler cohomology theory, and established the $CC$-linear isomorphism from the direct sum of two spaces of cusp forms on $Gamma$ with the same integral weight to the Eichler cohomology group of $Gamma$. After the results of Eichler, the Eichler cohomology theory was generalized in various ways. For example, these results were generalized by Knopp to the cases with arbitrary real weights. In this paper, we extend the Eichler cohomology theory to the context of Jacobi forms. We define the cohomology groups of Jacobi groups which are analogues of Eichler cohomology groups and prove an Eichler cohomology theorem for Jacobi forms of arbitrary real weights. Furthermore, we prove that every cocycle is parabolic and that for some special cases we have an isomorphism between the cohomology group and the space of Jacobi forms in terms of the critical values of partial $L$-functions of Jacobi cusp forms.
A generalized Riemann hypothesis states that all zeros of the completed Hecke $L$-function $L^*(f,s)$ of a normalized Hecke eigenform $f$ on the full modular group should lie on the vertical line $Re(s)=frac{k}{2}.$ It was shown by Kohnen that there exists a Hecke eigenform $f$ of weight $k$ such that $L^*(f,s) eq 0$ for sufficiently large $k$ and any point on the line segments $Im(s)=t_0, frac{k-1}{2} < Re(s) < frac{k}{2}-epsilon, frac{k }{2}+epsilon < Re(s) < frac{k+1}{2},$ for any given real number $t_0$ and a positive real number $epsilon.$ This paper concerns the non-vanishing of the product $L^*(f,s)L^*(f,w)$ $(s,win mathbb{C})$ on average.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا