ﻻ يوجد ملخص باللغة العربية
In recent years, a number of papers have been devoted to the study of roots of period polynomials of modular forms. Here, we study cohomological analogues of the Eichler-Shimura period polynomials corresponding to higher $L$-derivatives. We state general conjectures about the locations of the roots of the full and odd parts of the polynomials, in analogy with the existing literature on period polynomials, and we also give numerical evidence that similar results hold for our higher derivative period polynomials in the case of cusp forms. We prove a special case of this conjecture in the case of Eisenstein series.
Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways
A conjecture of Le says that the Deligne polytope $Delta_d$ is generically ordinary if $pequiv 1 (!!bmod D(Delta_d))$, where $D(Delta_d)$ is a combinatorial constant determined by $Delta_d$. In this paper a counterexample is given to show that the conjecture is not true in general.
In this article we study the limiting empirical measure of zeros of higher derivatives for sequences of random polynomials. We show that these measures agree with the limiting empirical measure of zeros of corresponding random polynomials. Various mo
Let $Gamma$ be a finitely generated Fuchsian group of the first kind which has at least one parabolic class. Eichler introduced a cohomology theory for Fuchsian groups, called as Eichler cohomology theory, and established the $CC$-linear isomorphism
A generalized Riemann hypothesis states that all zeros of the completed Hecke $L$-function $L^*(f,s)$ of a normalized Hecke eigenform $f$ on the full modular group should lie on the vertical line $Re(s)=frac{k}{2}.$ It was shown by Kohnen that there