ﻻ يوجد ملخص باللغة العربية
An infinitary version of braid groups has been considered as a direct limit of n-braid groups. However, we can imagine more complicated braids with infinitely many strings. We invetisgate basic properties especially when the number of strings is countable.
Let $n, k geq 3$. In this paper, we analyse the quotient group $B_n/Gamma_k(P_n)$ of the Artin braid group $B_n$ by the subgroup $Gamma_k(P_n)$ belonging to the lower central series of the Artin pure braid group $P_n$. We prove that it is an almost-c
In 1987 Bieri, Neumann and Strebel introduced a geometric invariant for discrete groups. In this article we compute and explicitly describe the BNS-invariant for the pure braid groups.
Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n $in$ N for which there exists a surjection between the n-and m-string braid groups of an orientable surface without boundary. This result is ess
We consider exact sequences and lower central series of surface braid groups and we explain how they can prove to be useful for obtaining representations for surface braid groups. In particular, using a completely algebraic framework, we describe the
Let M be a compact surface, either orientable or non-orientable. We study the lower central and derived series of the braid and pure braid groups of M in order to determine the values of n for which B_n(M) and P_n(M) are residually nilpotent or resid