ﻻ يوجد ملخص باللغة العربية
In order to clarify the nature of hypernuclear low-lying states, we carry out a comprehensive study for the structure of $^{144-154}_{~~~~~~~~Lambda}$Sm-hypernuclei, which exhibit a transition from vibrational to rotational characters as the neutron number increases. To this end, we employ a microscopic particle-core coupling scheme based on a covariant density functional theory. We find that the positive-parity ground-state band in the hypernuclei shares a similar structure to that of the corresponding core nucleus. That is, regardless of whether the core nucleus is spherical or deformed, each hypernuclear state is dominated by the single configuration of the $Lambda$ particle in the $s_{1/2}$ state ($Lambda s_{1/2}$) coupled to one core state of the ground band. In contrast, the low-lying negative-parity states mainly consist of $Lambda p_{1/2}$ and $Lambda p_{3/2}$ configurations coupled to plural nuclear core states. We show that, while the mixing amplitude between these configurations is negligibly small in spherical and weakly-deformed nuclei, it strongly increases as the core nucleus undergoes a transition to a well-deformed shape, being consistent with the Nilsson wave functions. We demonstrate that the structure of these negative-parity states with spin $I$ can be well understood based on the $LS$ coupling scheme, with the total orbital angular momentum of $L=[Iotimes 1]$ and the spin angular momentum of $S=1/2$.
The $gamma$ vibration is the most typical low-lying collective motion prevailing the nuclear chart. But only few one-phonon rotational bands in odd-$A$ nuclei have been known. Furthermore, two-phonon states, even the band head, have been observed in
The $^9$C nucleus and related capture reaction, ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$, have been intensively studied with an astrophysical interest. Due to the weakly-bound nature of $^9$C, its structure is likely to be described as the three-body ($
Excitation functions of elastic and inelastic 7Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in 8B. A new
The properties of the low-lying 2^+ states in the even-even nuclei around 132Sn are studied within the quasiparticle random phase approximation. Starting from a Skyrme interaction in the particle-hole channel and a density-dependent zero-range intera
The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.