ﻻ يوجد ملخص باللغة العربية
We present an approach for real-time, robust and accurate hand pose estimation from moving egocentric RGB-D cameras in cluttered real environments. Existing methods typically fail for hand-object interactions in cluttered scenes imaged from egocentric viewpoints, common for virtual or augmented reality applications. Our approach uses two subsequently applied Convolutional Neural Networks (CNNs) to localize the hand and regress 3D joint locations. Hand localization is achieved by using a CNN to estimate the 2D position of the hand center in the input, even in the presence of clutter and occlusions. The localized hand position, together with the corresponding input depth value, is used to generate a normalized cropped image that is fed into a second CNN to regress relative 3D hand joint locations in real time. For added accuracy, robustness and temporal stability, we refine the pose estimates using a kinematic pose tracking energy. To train the CNNs, we introduce a new photorealistic dataset that uses a merged reality approach to capture and synthesize large amounts of annotated data of natural hand interaction in cluttered scenes. Through quantitative and qualitative evaluation, we show that our method is robust to self-occlusion and occlusions by objects, particularly in moving egocentric perspectives.
Real-time simultaneous tracking of hands manipulating and interacting with external objects has many potential applications in augmented reality, tangible computing, and wearable computing. However, due to difficult occlusions, fast motions, and unif
We address the highly challenging problem of real-time 3D hand tracking based on a monocular RGB-only sequence. Our tracking method combines a convolutional neural network with a kinematic 3D hand model, such that it generalizes well to unseen data,
Tracking and reconstructing the 3D pose and geometry of two hands in interaction is a challenging problem that has a high relevance for several human-computer interaction applications, including AR/VR, robotics, or sign language recognition. Existing
We present a real-time on-device hand tracking pipeline that predicts hand skeleton from single RGB camera for AR/VR applications. The pipeline consists of two models: 1) a palm detector, 2) a hand landmark model. Its implemented via MediaPipe, a fra
In this paper, we propose a textbf{Tr}ansformer-based RGB-D textbf{e}gocentric textbf{a}ction textbf{r}ecognition framework, called Trear. It consists of two modules, inter-frame attention encoder and mutual-attentional fusion block. Instead of using