ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation by Moving Charges

303   0   0.0 ( 0 )
 نشر من قبل Gianluca Geloni
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is generally accepted that the dynamics of relativistic particles in the lab frame can be described by taking into account the relativistic dependence of the particles momenta on the velocity, with no reference to Lorentz transformations. The electrodynamics problem can then be treated within a single inertial frame description. To evaluate radiation fields from moving charged particles we need their velocities and positions as a function of the lab frame time t. The relativistic motion of a particle in the lab frame is described by Newtons second law corrected for the relativistic dependence of the particle momentum on the velocity. In all standard derivations the trajectories in the source part of the usual Maxwells equations are identified with the trajectories $vec{x}(t)$ calculated by using the corrected Newtons second law. This way of coupling fields and particles is considered correct. We argue that this procedure needs to be changed by demonstrating a counterintuitive: the results of conventional theory of radiation by relativistically moving charges are not consistent with the principle of relativity. The trajectory of a particle in the lab frame consistent with the usual Maxwells equations, is found by solving the dynamics equation in manifestly covariant form, with the proper time $tau$ used to parameterize the particle world-line in space-time. We find a difference between the true particle trajectory $vec{x}(t)$ calculated or measured in the conventional way, and the covariant particle trajectory $vec{x}_{cov}(t)$ calculated by projecting the world-line to the lab frame and using t to parameterize the trajectory curve. The difference is due to a choice of convention, but only $vec{x}_{cov}(t)$ is consistent with the usual Maxwells equations: therefore, a correction of the conventional synchrotron-cyclotron radiation theory is required.

قيم البحث

اقرأ أيضاً

We investigate the radiation from a charged particle moving outside a dielectric cylinder parallel to its axis. It is assumed that the cylinder is immersed into a homogeneous medium. The expressions are given for the vector potential and for the elec tric and magnetic fields. The spectral distributions are studied for three types of the radiations: (i) Cherenkov radiation (CR) in the exterior medium, (ii) radiation on the guided modes of the dielectric cylinder, and (iii) emission of surface polaritons. Unlike the first two types of radiations, there is no velocity threshold for the generation of surface polaritons. The corresponding radiation is present in the spectral range where the dielectric permittivities of the cylinder and surrounding medium have opposite signs. The spectral range of the emitted surface polaritons becomes narrower with decreasing energy of the particle. The general results are illustrated for a special case of the Drude model for dispersion of the dielectric permittivity of the cylinder. We show that the presence of the cylinder may lead to the appearance of strong narrow peaks in the spectral distribution of the CR in the exterior medium. The conditions are specified for the appearance of those peaks and the corresponding heights and widths are analytically estimated. The collective effects of particles in bunches are discussed.
124 - E.G.Bessonov 2010
We investigated the phenomena of self-stimulation of incoherent emission from an undulator installed in the linear accelerator or quasi-isochronous storage ring. We discuss possible applications of these phenomena for the beam physics also.
We consider electromagnetic radiation of a charged particle bunch moving uniformly along a corrugated planar metallic surface. It is assumed that the wavelengths under consideration are much larger than the period and the depth of corrugation. Using the method of the equivalent boundary conditions we obtain the Fourier-transform of the Hertz vector. It is demonstrated that the ultra-relativistic bunch excites the surface waves, whereas the volume radiation is absent. Fourier-transforms of the surface wave components and spectral density of energy losses are obtained and analyzed.
Radiation of charged particles moving in the presence of dielectric targets is of significant interest for various applications in the accelerator and beam physics. The size of these targets is typically much larger than the wavelengths under conside ration. This fact gives us an obvious small parameter of the problem and allows developing approximate methods for analysis. We develop two methods, which are called the ray optics method and the aperture method. In the present paper, we apply these methods to analysis of Cherenkov radiation from a charge moving through a vacuum channel in a solid dielectric sphere. We present the main analytical results and describe the physical effects. In particular, it is shown that the radiation field possesses an expressed maximum at a certain distance from the sphere at the Cherenkov angle. Additionally, we perform simulations in COMSOL Multiphysics and show a good agreement between numerical and analytical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا