ﻻ يوجد ملخص باللغة العربية
It is generally accepted that the dynamics of relativistic particles in the lab frame can be described by taking into account the relativistic dependence of the particles momenta on the velocity, with no reference to Lorentz transformations. The electrodynamics problem can then be treated within a single inertial frame description. To evaluate radiation fields from moving charged particles we need their velocities and positions as a function of the lab frame time t. The relativistic motion of a particle in the lab frame is described by Newtons second law corrected for the relativistic dependence of the particle momentum on the velocity. In all standard derivations the trajectories in the source part of the usual Maxwells equations are identified with the trajectories $vec{x}(t)$ calculated by using the corrected Newtons second law. This way of coupling fields and particles is considered correct. We argue that this procedure needs to be changed by demonstrating a counterintuitive: the results of conventional theory of radiation by relativistically moving charges are not consistent with the principle of relativity. The trajectory of a particle in the lab frame consistent with the usual Maxwells equations, is found by solving the dynamics equation in manifestly covariant form, with the proper time $tau$ used to parameterize the particle world-line in space-time. We find a difference between the true particle trajectory $vec{x}(t)$ calculated or measured in the conventional way, and the covariant particle trajectory $vec{x}_{cov}(t)$ calculated by projecting the world-line to the lab frame and using t to parameterize the trajectory curve. The difference is due to a choice of convention, but only $vec{x}_{cov}(t)$ is consistent with the usual Maxwells equations: therefore, a correction of the conventional synchrotron-cyclotron radiation theory is required.
We investigate the radiation from a charged particle moving outside a dielectric cylinder parallel to its axis. It is assumed that the cylinder is immersed into a homogeneous medium. The expressions are given for the vector potential and for the elec
We investigated the phenomena of self-stimulation of incoherent emission from an undulator installed in the linear accelerator or quasi-isochronous storage ring. We discuss possible applications of these phenomena for the beam physics also.
We consider electromagnetic radiation of a charged particle bunch moving uniformly along a corrugated planar metallic surface. It is assumed that the wavelengths under consideration are much larger than the period and the depth of corrugation. Using
Radiation of charged particles moving in the presence of dielectric targets is of significant interest for various applications in the accelerator and beam physics. The size of these targets is typically much larger than the wavelengths under conside
It is demonstrated that a constant magnetic moment does not emit electo-magnetic radiation while moving in an arbitrary field