ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an IT Security Risk Assessment Framework for Railway Automation

88   0   0.0 ( 0 )
 نشر من قبل Jens Braband
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jens Braband




اسأل ChatGPT حول البحث

Some recent incidents have shown that possibly the vulnerability of IT systems in railway automation has been underestimated. Fortunately, so far, almost only denial-of-service attacks were successful, but due to several trends, such as the use of commercial IT and communication systems or privatization, the threat potential could increase in the near future. However, up to now, no harmonized IT security risk assessment framework for railway automation exists. This paper defines an IT security risk assessment framework which aims to separate IT security and safety requirements as well as certification processes as far as possible. It builds on the well-known safety and approval processes from IEC 62425 and integrates IT security requirements based on the ISA99/IEC62443 standard series. While the detailed results are related to railway automation the general concepts are also applicable to other safety-critical application areas.

قيم البحث

اقرأ أيضاً

Adversarial attacks for machine learning models have become a highly studied topic both in academia and industry. These attacks, along with traditional security threats, can compromise confidentiality, integrity, and availability of organizations ass ets that are dependent on the usage of machine learning models. While it is not easy to predict the types of new attacks that might be developed over time, it is possible to evaluate the risks connected to using machine learning models and design measures that help in minimizing these risks. In this paper, we outline a novel framework to guide the risk management process for organizations reliant on machine learning models. First, we define sets of evaluation factors (EFs) in the data domain, model domain, and security controls domain. We develop a method that takes the asset and task importance, sets the weights of EFs contribution to confidentiality, integrity, and availability, and based on implementation scores of EFs, it determines the overall security state in the organization. Based on this information, it is possible to identify weak links in the implemented security measures and find out which measures might be missing completely. We believe our framework can help in addressing the security issues related to usage of machine learning models in organizations and guide them in focusing on the adequate security measures to protect their assets.
78 - Jens Braband 2016
Recently, a novel approach towards semi-quantitative IT security risk assessment has been proposed in the draft IEC 62443-3-2. This approach is analyzed from several different angles, e.g. embedding into the overall standard series, semantic and meth odological aspects. As a result, several systematic flaws in the approach are exposed. As a way forward, an alternative approach is proposed which blends together semi-quantitative risk assessment as well as threat and risk analysis.
76 - Ahmed E. Youssef 2020
Security is considered one of the top ranked risks of Cloud Computing (CC) due to the outsourcing of sensitive data onto a third party. In addition, the complexity of the cloud model results in a large number of heterogeneous security controls that m ust be consistently managed. Hence, no matter how strongly the cloud model is secured, organizations continue suffering from lack of trust on CC and remain uncertain about its security risk consequences. Traditional risk management frameworks do not consider the impact of CC security risks on the business objectives of the organizations. In this paper, we propose a novel Cloud Security Risk Management Framework (CSRMF) that helps organizations adopting CC identify, analyze, evaluate, and mitigate security risks in their Cloud platforms. Unlike traditional risk management frameworks, CSRMF is driven by the business objectives of the organizations. It allows any organization adopting CC to be aware of cloud security risks and align their low-level management decisions according to high-level business objectives. In essence, it is designed to address impacts of cloud-specific security risks into business objectives in a given organization. Consequently, organizations are able to conduct a cost-value analysis regarding the adoption of CC technology and gain an adequate level of confidence in Cloud technology. On the other hand, Cloud Service Providers (CSP) are able to improve productivity and profitability by managing cloud-related risks. The proposed framework has been validated and evaluated through a use-case scenario.
Cyber-physical systems (CPS) are interconnected architectures that employ analog, digital, and communication resources for their interaction with the physical environment. CPS are the backbone of enterprise, industrial, and critical infrastructure. T hus, their vital importance makes them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature, can have disastrous consequences. The security of CPES can be enhanced leveraging testbed capabilities to replicate power system operations, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. In this paper, we provide a comprehensive overview of the CPS security landscape with emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models which can be used to evaluate the systems performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.
Internet of Things (IoT) based applications face an increasing number of potential security risks, which need to be systematically assessed and addressed. Expert-based manual assessment of IoT security is a predominant approach, which is usually inef ficient. To address this problem, we propose an automated security assessment framework for IoT networks. Our framework first leverages machine learning and natural language processing to analyze vulnerability descriptions for predicting vulnerability metrics. The predicted metrics are then input into a two-layered graphical security model, which consists of an attack graph at the upper layer to present the network connectivity and an attack tree for each node in the network at the bottom layer to depict the vulnerability information. This security model automatically assesses the security of the IoT network by capturing potential attack paths. We evaluate the viability of our approach using a proof-of-concept smart building system model which contains a variety of real-world IoT devices and potential vulnerabilities. Our evaluation of the proposed framework demonstrates its effectiveness in terms of automatically predicting the vulnerability metrics of new vulnerabilities with more than 90% accuracy, on average, and identifying the most vulnerable attack paths within an IoT network. The produced assessment results can serve as a guideline for cybersecurity professionals to take further actions and mitigate risks in a timely manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا