ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing spin density wave, collinear, and helical magnetism in Fe1+xTe

81   0   0.0 ( 0 )
 نشر من قبل Chris Stock
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fe1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single crystal diffraction to demonstrate the collinear order for the iron deficient side of the Fe1+xTe phase diagram. Polarized neutron inelastic scattering show that the fluctuations associated with this collinear order are predominately transverse at low energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical order in the Fe1+xTe phase diagram. We first show that the phase separating collinear and helical order is characterized by a spin-density wave with a single propagation wave vector of (~ 0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wavevector are different from the collinear phase being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C4 symmetry of the lattice, but display different widths in momentum along the two tetragonal directions at low energy transfers. While the low energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of density wave phase implies the importance of electronic and orbital properties.

قيم البحث

اقرأ أيضاً

To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-de pendence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges onl y from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of a hole-doped BaFe2As2. This observation was interpreted as indirect evidence of a new double-Q magnetic structure, but alternative models of orbital order could not be ruled out. Here, we present Mossbauer data that show unambiguously that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. We show that this state is naturally explained as the interference between two spin-density waves, demonstrating the itinerant character of the magnetism of these materials and the primary role played by magnetic over orbital degrees of freedom.
Temperature evolution of the 2H-TaSe2 Fermi surface (FS) is studied by high-resolution angle-resolved photoemission spectroscopy (ARPES). High-accuracy determination of the FS geometry was possible after measuring electron momenta and velocities alon g all high-symmetry directions as a function of temperature with subsequent fitting to a tight-binding model. The estimated incommensurability parameter of the nesting vector agrees with that of the incommensurate charge modulations. We observe detectable nonmonotonic temperature dependence of the FS shape, which we show to be consistent with the analogous behavior of the pseudogap. These changes in the electronic structure could stem from the competition of commensurate and incommensurate charge density wave order fluctuations, explaining the puzzling reopening of the pseudogap observed in the normal state of both transition metal dichalcogenides and high-Tc cuprates.
The phase diagram of the organic superconductor (TMTSF)_2PF_6 has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T_SDW and T_SC and the superconducting critical current. The onset temperature T_SC is practically constant (1.20+-0.01 K) in this region where only the SC/SDW domain proportion below T_SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T_SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings.
The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4 .8 T the muon Knight shift is enhanced and the superconducting transition changes from second order towards first order as predicted for Pauli-limited superconductors. The field and temperature dependence of the transverse muon spin relaxation rate sigma reveal paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the normal state close to Hc2 correlated spin fluctuations as described by the self consistent renormalization theory are observed. The results support the formation of a mode-coupled superconducting and antiferromagnetically ordered phase in CeCoIn5 for H directed parallel to the c-axis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا