ﻻ يوجد ملخص باللغة العربية
The Fe1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single crystal diffraction to demonstrate the collinear order for the iron deficient side of the Fe1+xTe phase diagram. Polarized neutron inelastic scattering show that the fluctuations associated with this collinear order are predominately transverse at low energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical order in the Fe1+xTe phase diagram. We first show that the phase separating collinear and helical order is characterized by a spin-density wave with a single propagation wave vector of (~ 0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wavevector are different from the collinear phase being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C4 symmetry of the lattice, but display different widths in momentum along the two tetragonal directions at low energy transfers. While the low energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of density wave phase implies the importance of electronic and orbital properties.
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-de
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges onl
Temperature evolution of the 2H-TaSe2 Fermi surface (FS) is studied by high-resolution angle-resolved photoemission spectroscopy (ARPES). High-accuracy determination of the FS geometry was possible after measuring electron momenta and velocities alon
The phase diagram of the organic superconductor (TMTSF)_2PF_6 has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K)
The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4