ﻻ يوجد ملخص باللغة العربية
Building a voice conversion (VC) system from non-parallel speech corpora is challenging but highly valuable in real application scenarios. In most situations, the source and the target speakers do not repeat the same texts or they may even speak different languages. In this case, one possible, although indirect, solution is to build a generative model for speech. Generative models focus on explaining the observations with latent variables instead of learning a pairwise transformation function, thereby bypassing the requirement of speech frame alignment. In this paper, we propose a non-parallel VC framework with a variational autoencoding Wasserstein generative adversarial network (VAW-GAN) that explicitly considers a VC objective when building the speech model. Experimental results corroborate the capability of our framework for building a VC system from unaligned data, and demonstrate improved conversion quality.
We propose a flexible framework for spectral conversion (SC) that facilitates training with unaligned corpora. Many SC frameworks require parallel corpora, phonetic alignments, or explicit frame-wise correspondence for learning conversion functions o
Generative Adversarial Networks (GANs) have been impactful on many problems and applications but suffer from unstable training. The Wasserstein GAN (WGAN) leverages the Wasserstein distance to avoid the caveats in the minmax two-player training of GA
We investigate under and overfitting in Generative Adversarial Networks (GANs), using discriminators unseen by the generator to measure generalization. We find that the model capacity of the discriminator has a significant effect on the generators mo
An effective approach for voice conversion (VC) is to disentangle linguistic content from other components in the speech signal. The effectiveness of variational autoencoder (VAE) based VC (VAE-VC), for instance, strongly relies on this principle. In
Text generation is of particular interest in many NLP applications such as machine translation, language modeling, and text summarization. Generative adversarial networks (GANs) achieved a remarkable success in high quality image generation in comput