ﻻ يوجد ملخص باللغة العربية
Dynamical dark energy has been recently suggested as a promising and physical way to solve the 3.4 sigma tension on the value of the Hubble constant $H_0$ between the direct measurement of Riess et al. (2016) (R16, hereafter) and the indirect constraint from Cosmic Microwave Anisotropies obtained by the Planck satellite under the assumption of a $Lambda$CDM model. In this paper, by parameterizing dark energy evolution using the $w_0$-$w_a$ approach, and considering a $12$ parameter extended scenario, we find that: a) the tension on the Hubble constant can indeed be solved with dynamical dark energy, b) a cosmological constant is ruled out at more than $95 %$ c.l. by the Planck+R16 dataset, and c) all of the standard quintessence and half of the downward going dark energy model space (characterized by an equation of state that decreases with time) is also excluded at more than $95 %$ c.l. These results are further confirmed when cosmic shear, CMB lensing, or SN~Ia luminosity distance data are also included. However, tension remains with the BAO dataset. A cosmological constant and small portion of the freezing quintessence models are still in agreement with the Planck+R16+BAO dataset at between 68% and 95% c.l. Conversely, for Planck plus a phenomenological $H_0$ prior, both thawing and freezing quintessence models prefer a Hubble constant of less than 70 km/s/Mpc. The general conclusions hold also when considering models with non-zero spatial curvature.
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125 (2011)] about constraints on the smoothness $alpha$ parameter and dark energy models using observational $H(z)$ data. It is argued here that their procedure is conceptually incons
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneitie
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the de
The presence of inhomogeneities modifies the cosmic distances through the gravitational lensing effect, and, indirectly, must affect the main cosmological tests. Assuming that the dark energy is a smooth component, the simplest way to account for the
Low density regions are less affected by the nonlinear structure formation and baryonic physics. They are ideal places for probing the nature of dark energy, a possible explanation for the cosmic acceleration. Unlike void lensing, which requires iden