ترغب بنشر مسار تعليمي؟ اضغط هنا

Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1

154   0   0.0 ( 0 )
 نشر من قبل S Rathna Kumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Rathna Kumar




اسأل ChatGPT حول البحث

In this work, we propose refinements to the difference-smoothing algorithm for measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for estimation of time delay uncertainty and using a plot of normalized $chi^2$ computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult `rungs -- rung3 and rung4 -- of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested `rungs. The MATLAB codes used in this work and the detailed results are made publicly available at https://github.com/rathnakumars/difference-smoothing

قيم البحث

اقرأ أيضاً

In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimp osed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au .
Microvariability consists in small time scale variations of low amplitude in the photometric light curves of quasars, and represents an important tool to investigate their inner core. Detection of quasar microvariations is challenging for their non-p eriodicity, as well as the need for high monitoring frequency and high signal-to-noise ratio. Statistical tests developed for the analysis of quasar differential light curves usually show either low power or low reliability, or both. In this paper we compare two statistical procedures that include several stars to perform tests with enhanced power and high reliability. We perform light curve simulations of variable quasars and non-variable stars, and analyze them with statistical procedures developed from the F-test and the analysis of variance. The results show a large improvement in the power of both statistical probes, and a larger reliability, when several stars are included in the analysis. The results from the simulations agree with those obtained from observations of real quasars. The high power and high reliability of the tests discussed in this paper improve the results that can be obtained from short and long time scale variability studies. These techniques are not limited to quasar variability; on the contrary, they can be easily implemented to other sources such as variable stars. Their applications to future research and to the analysis of large field photometric monitoring archives can reveal new variable sources.
Within the last years, the classification of variable stars with Machine Learning has become a mainstream area of research. Recently, visualization of time series is attracting more attention in data science as a tool to visually help scientists to r ecognize significant patterns in complex dynamics. Within the Machine Learning literature, dictionary-based methods have been widely used to encode relevant parts of image data. These methods intrinsically assign a degree of importance to patches in pictures, according to their contribution in the image reconstruction. Inspired by dictionary-based techniques, we present an approach that naturally provides the visualization of salient parts in astronomical light curves, making the analogy between image patches and relevant pieces in time series. Our approach encodes the most meaningful patterns such that we can approximately reconstruct light curves by just using the encoded information. We test our method in light curves from the OGLE-III and StarLight databases. Our results show that the proposed model delivers an automatic and intuitive visualization of relevant light curve parts, such as local peaks and drops in magnitude.
The CoRoT space mission was operating for almost 6 years, producing thousands of continuous photometric light curves. The temporal series of exposures are processed by the production pipeline, correcting the data for known instrumental effects. But e ven after these model-based corrections, some collective trends are still visible in the light curves. We propose here a simple exposure-based algorithm to remove instrumental effects. The effect of each exposure is a function of only two instrumental stellar parameters, position on the CCD and photometric aperture. The effect is not a function of the stellar flux, and therefore much more robust. As an example, we show that the $sim2%$ long-term variation of the early run LRc01 is nicely detrended on average. This systematics removal process is part of the CoRoT legacy data pipeline.
A computer program is introduced, which allows to determine statistically optimal approxi-mation using the Asymptotic Parabola fit, or, in other words, the spline consisting of polynomials of order 1,2,1, or two lines (asymptotes) connected with a pa rabola. The function itself and its derivative is continuous. There are 5 parameters: two points, where a line switches to a parabola and vice versa, the slopes of the line and the curvature of the parabola. Extreme cases are either the parabola without lines (i.e.the parabola of width of the whole interval), or lines without a parabola (zero width of the parabola), or line+parabola without a second line. Such an approximation is especially effective for pulsating variables, for which the slopes of the ascending and descending branches are generally different, so the maxima and minima have asymmetric shapes. The method was initially introduced by Marsakova and Andronov (1996OAP.....9..127M) and realized as a computer program written in QBasic under DOS. It was used for dozens of variable stars, particularly, for the catalogs of the individual characteristics of pulsations of the Mira (1998OAP....11...79M) and semi-regular (200OAP....13..116C) pulsating variables. For the eclipsing variables with nearly symmetric shapes of the minima, we use a symmetric version of the Asymptotic parabola. Here we introduce a Windows-based program, which does not have DOS limitation for the memory (number of observations) and screen resolution. The program has an user-friendly interface and is illustrated by an application to the test signal and to the pulsating variable AC Her.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا