ﻻ يوجد ملخص باللغة العربية
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. These DY results are obtained at a hard scale comparable to that of a recent COMPASS SIDIS measurement and hence allow unique tests of fundamental QCD universality predictions.
In general, eight target transverse spin-dependent azimuthal modulations are allowed in semi inclusive deep inelastic scattering of polarized leptons on a transversely polarized target. In the QCD parton model four of these asymmetries can be interpr
We show that for Drell-Yan events by unpolarized hadronic projectiles and nuclear targets, azimuthal asymmetries can arise from the nuclear distortion of the hadronic projectile wave function, typically a spin-orbit effect occurring on the nuclear su
Single transverse-spin asymmetries have been studied intensively both in experiment and theory. Theoretically, two factorization approaches have been proposed. One is by using transverse-momentum-dependent factorization and the asymmetry comes from t
Charged lepton transverse momenta in the Drell-Yan processes play an important role at the LHC in precision measurements of the Standard Model parameters, such as the W-boson mass and width, their charge asymmetries and sin^2(theta_W). Therefore, the
We discuss the double-spin asymmetries in transversely polarized Drell-Yan process, calculating all-order gluon resummation corrections up to the next-to-leading logarithmic accuracy. This resummation is relevant when the transverse-momentum Q_T of t