ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman spectroscopy of graphene under ultrafast laser excitation

435   0   0.0 ( 0 )
 نشر من قبل Carino Ferrante
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions, however their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study the Raman spectrum of graphene under ultrafast laser excitation with 3ps pulses, which trade off between impulsive stimulation and spectral resolution. We localize energy into hot carriers, generating non-equilibrium temperatures in the ~1700-3100K range, far exceeding that of the phonon bath, while simultaneously detecting the Raman response. The linewidth of both G and 2D peaks show an increase as function of the electronic temperature. We explain this as a result of the Dirac cones broadening and electron-phonon scattering in the highly excited transient regime, important for the emerging field of graphene-based photonics and optoelectronics.



قيم البحث

اقرأ أيضاً

We report stimulated Raman spectroscopy of the G phonon in both single and multi-layer graphene, through Coherent anti-Stokes Raman Scattering (CARS). The signal generated by the third order nonlinearity is dominated by a vibrationally non-resonant b ackground (NVRB), which obscures the Raman lineshape. We demonstrate that the vibrationally resonant CARS peak can be measured by reducing the temporal overlap of the laser excitation pulses, suppressing the NVRB. We model the observed spectra, taking into account the electronically resonant nature of both CARS and NVRB. We show that CARS can be used for graphene imaging with vibrational sensitivity.
We report a Keldysh-like model for the electron transition rate in dielectrics under an intense circularly polarized laser. We assume a parabolic two-band system and the Houston function as the time-dependent wave function of the valence and conducti on bands. Our formula reproduces the experimental result for the ratio of the excitation rate between linear and circular polarizations for $alpha$-quartz. This formula can be easily introduced into simulations of nanofabrication using an intense circularly polarized laser.
We report multiphonon Raman scattering in graphene samples. Higher order combination modes involving 3 phonons and 4 phonons are observed in single-layer (SLG), bi-layer (BLG), and few layer (FLG) graphene samples prepared by mechanical exfoliation. The intensity of the higher order phonon modes (relative to the G peak) is highest in SLG and decreases with increasing layers. In addition, all higher order modes are observed to upshift in frequency almost linearly with increasing graphene layers, betraying the underlying interlayer van der Waals interactions.
115 - J. Ribeiro-Soares 2015
A theoretical model supported by experimental results explains the dependence of the Raman scattering signal on the evolution of structural parameters along the amorphization trajectory of polycrystalline graphene systems. Four parameters rule the sc attering efficiencies, two structural and two related to the scattering dynamics. With the crystallite sizes previously defined from X-ray diffraction and microscopy experiments, the three other parameters (the average grain boundaries width, the phonon coherence length, and the electron coherence length) are extracted from the Raman data with the geometrical model proposed here. The broadly used intensity ratio between the C-C stretching (G band) and the defect-induced (D band) modes can be used to measure crystallite sizes only for samples with sizes larger than the phonon coherence length, which is found equal to 32 nm. The Raman linewidth of the G band is ideal to characterize the crystallite sizes below the phonon coherence length, down to the average grain boundaries width, which is found to be 2.8 nm. Ready-to-use equations to determine the crystallite dimensions based on Raman spectroscopy data are given.
We present Raman spectroscopy measurements of non-etched graphene nanoribbons, with widths ranging from 15 to 160 nm, where the D-line intensity is strongly dependent on the polarization direction of the incident light. The extracted edge disorder co rrelation length is approximately one order of magnitude larger than on previously reported graphene ribbons fabricated by reactive ion etching techniques. This suggests a more regular crystallographic orientation of the non-etched graphene ribbons here presented. We further report on the ribbons width dependence of the line-width and frequency of the long-wavelength optical phonon mode (G-line) and the 2D-line of the studied graphene ribbons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا