ترغب بنشر مسار تعليمي؟ اضغط هنا

The Onset of Thermally Unstable Cooling from the Hot Atmospheres of Giant Galaxies in Clusters - Constraints on Feedback Models

58   0   0.0 ( 0 )
 نشر من قبل Michael Hogan Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present accurate mass and thermodynamic profiles for a sample of 56 galaxy clusters observed with the Chandra X-ray Observatory. We investigate the effects of local gravitational acceleration in central cluster galaxies, and we explore the role of the local free-fall time (t$_{rm ff}$) in thermally unstable cooling. We find that the local cooling time (t$_{rm cool}$) is as effective an indicator of cold gas, traced through its nebular emission, as the ratio of t$_{rm cool}$/t$_{rm ff}$. Therefore, t$_{rm cool}$ alone apparently governs the onset of thermally unstable cooling in hot atmospheres. The location of the minimum t$_{rm cool}$/t$_{rm ff}$, a thermodynamic parameter that simulations suggest may be key in driving thermal instability, is unresolved in most systems. As a consequence, selection effects bias the value and reduce the observed range in measured t$_{rm cool}$/t$_{rm ff}$ minima. The entropy profiles of cool-core clusters are characterized by broken power-laws down to our resolution limit, with no indication of isentropic cores. We show, for the first time, that mass isothermality and the $K propto r^{2/3}$ entropy profile slope imply a floor in t$_{rm cool}$/t$_{rm ff}$ profiles within central galaxies. No significant departures of t$_{rm cool}$/t$_{rm ff}$ below 10 are found, which is inconsistent with many recent feedback models. The inner densities and cooling times of cluster atmospheres are resilient to change in response to powerful AGN activity, suggesting that the energy coupling between AGN heating and atmospheric gas is gentler than most models predict.


قيم البحث

اقرأ أيضاً

We analyzed Chandra X-ray observations of five galaxy clusters whose atmospheric cooling times, entropy parameters, and cooling time to free-fall time ratios within the central galaxies lie below 1 Gyr, below 30 keV cm^2, and between 20 < tcool/tff < 50, respectively. These thermodynamic properties are commonly associated with molecular clouds, bright H-alpha emission, and star formation in central galaxies. However, none of these clusters have detectable H-alpha indicated in the ACCEPT database, nor do they have significant star formation rates or detectable molecular gas. Among these, only RBS0533 has a detectable radio/X-ray bubble which are commonly observed in cooling atmospheres. Signatures of uplifted, high metallicity atmospheric gas are absent. Despite its prominent X-ray bubble, RBS0533 lacks significant levels of molecular gas. Cold gas is absent at appreciable levels in these systems perhaps because their radio sources have failed to lift low entropy atmospheric gas to an altitude where the ratio of the cooling time to the free-fall time falls below unity.
Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heatin g and star formation. Thus, this mechanism provides a way to link the AGN accretion rate to the global properties of an ambient cooling flow, but without the implicit assumption that the accreted material must have flowed onto the black hole from 10s of kiloparsecs away. It is shown that a fuelling mechanism of this sort naturally leads to a close balance between AGN heating and the radiative cooling rate of the hot, X-ray emitting halo. Furthermore, AGN powered by cooling-induced gravitational instability would exhibit characteristic duty cycles (delta) which are redolent of recent observational findings: delta is proportional to L_X/sigma_{*}^{3}, where L_X is the X-ray luminosity of the hot atmosphere, and sigma_{*} is the central stellar velocity dispersion of the host galaxy. Combining this result with well-known scaling relations, we deduce a duty cycle for radio AGN in elliptical galaxies that is approximately proportional to M_{BH}^{1.5}, where M_{BH} is the central black hole mass. Outburst durations and Eddington ratios are also given. Based on the results of this study, we conclude that gravitational instability could provide an important mechanism for supplying fuel to AGN in massive galaxies and clusters, and warrants further investigation.
We present strong gravitational lensing models for 37 galaxy clusters from the SDSS Giant Arcs Survey. We combine data from multi-band Hubble Space Telescope WFC3imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, APO, and MMT, in order to detect and spectroscopically confirm new multiply-lensed background sources behind the clusters. We report spectroscopic or photometric redshifts of sources in these fields, including cluster galaxies and background sources. Based on all available lensing evidence, we construct and present strong lensing mass models for these galaxy clusters.
We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of {Lambda}CDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with $M_star$ > $10^{11}$ $M_odot$ with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius ($approx$ 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. -d log({rho})/d log(r) $approx$ 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.
We exploit a sample of ultra-faint high-redshift galaxies (demagnified HST $H_{160}$ magnitude $>30$) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function (LF) in the presence of photoionizat ion feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including 7 HST bands and deep $K_s$ and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-$z$ galaxies constrain the cut-off halo circular velocity below which star-formation is suppressed by photo-ionization feedback to $v_c^{rm cut} < 50$ km s$^{-1}$. This circular velocity corresponds to a halo mass of $approx5.6times10^9~M_odot$ and $approx2.3times10^9~M_odot$ at $z=5$ and 10 respectively: higher mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا