ﻻ يوجد ملخص باللغة العربية
Let n be a non-null positive integer and $d(n)$ is the number of positive divisors of n, called the divisor function. Of course, $d(n) leq n$. $d(n) = 1$ if and only if $n = 1$. For $n > 2$ we have $d(n) geq 2$ and in this paper we try to find the smallest $k$ such that $d(d(...d(n)...)) = 2$ where the divisor function is applied $k$ times. At the end of the paper we make a conjecture based on some observations.
Let $alpha=0.a_1a_2a_3ldots$ be an irrational number in base $b>1$, where $0leq a_i<b$. The number $alpha in (0,1)$ is a $textit{normal number}$ if every block $(a_{n+1}a_{n+2}ldots a_{n+k})$ of $k$ digits occurs with probability $1/b^k$. A condition
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be ex
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ varphi(n)$ be the Euler totient function. The result $ sum_{nleq x}varphi([x/n])=(6/pi^2)xlog x+Oleft ( x(log x)^{2/3}(loglog x)^{1/3}right ) $ was proved
Some properties of the optimal representation of numbers are investigated. This representation, which is to the base-e, is examined for coding of integers. An approximate representation without fractions that we call WF is introduced and compared wit
Let $ xgeq 1 $ be a large number, let $ [x]=x-{x} $ be the largest integer function, and let $ sigma(n)$ be the sum of divisors function. This note presents the first proof of the asymptotic formula for the average order $ sum_{pleq x}sigma([x/p])=c_