ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring molecular frequencies in the 1--10 {mu}m range at 11-digits accuracy

118   0   0.0 ( 0 )
 نشر من قبل Gabriele Santambrogio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mid infrared (MIR) photonics is a key region for molecular physics [1]. High-resolution spectroscopy in the 1--10 {mu}m region, though, has never been fully tackled for the lack of widely-tunable and practical light sources. Indeed, all solutions proposed thus far suffer from at least one of three issues: they are feasible only in a narrow spectral range; the power available for spectroscopy is limited; the frequency accuracy is poor. Here, we present a setup for high-resolution spectroscopy that can be applied in the whole 1--10 {mu}m range by combining the power of quantum cascade lasers (QCLs) and the accuracy achievable by difference frequency generation using an OP-GaP crystal. The frequency is measured against a primary frequency standard using the Italian metrological fibre link network. We demonstrate the performance of the setup by measuring a vibrational transition in a highly-excited metastable state of CO around 6 {mu}m with 11 digits of precision, four orders of magnitude better than the value available in the literature [2].



قيم البحث

اقرأ أيضاً

We have fabricated and characterized a n-doped InSb Faraday isolator in the mid-IR range (9.2 $mu$m). A high isolation ratio of $approx$30 dB with a transmission over 80% (polarizer losses not included) is obtained at room temperature. Further possib le improvements are discussed. A similar design can be used to cover a wide wavelength range (lambda ~ 7.5-30 $mu$m).
We report about the realization of a quantum device for force sensing at micrometric scale. We trap an ultracold $^{88}$Sr atomic cloud with a 1-D optical lattice, then we place the atomic sample close to a test surface using the same optical lattice as an elevator. We demonstrate precise positioning of the sample at the $mu$m scale. By observing the Bloch oscillations of atoms into the 1-D optical standing wave, we are able to measure the total force on the atoms along the lattice axis, with a spatial resolution of few microns. We also demonstrate a technique for transverse displacement of the atoms, allowing to perform measurements near either transparent or reflective test surfaces. In order to reduce the minimum distance from the surface, we compress the longitudinal size of the atomic sample by means of an optical tweezer. Such system is suited for studies of atom-surface interaction at short distance, such as measurement of Casimir force and search for possible non-Newtonian gravity effects.
Using a free-running distributed-feedback quantum cascade laser (QCL) emitting at 9.54 $mu$m, the pressure shift parameters of four intense rovibrational transitions in the $ u_3$ fundamental band of ozone induced by oxygen (O$_2$), air and the noble gases helium (He), argon (Ar), and xenon (Xe) are obtained by employing second harmonic detection. The experimental analysis comprises a full uncertainty budget and provides line shift data which are traceable to SI. The high density of transitions in the $ u_3$ spectral region of ozone make this region particularly difficult to study with more commonly used techniques such as Fourier transform spectroscopy. The comparatively high spectral resolution of the QCL in the MHz range, on the contrary, allows to measure molecular shifts at relatively low pressures (from 2 to 70 hPa), thus reducing the impact of spectral congestion due to pressure broadening of molecular lines. The comparison of our results with published data shows that presently recommended values for the pressure shift are too low in this region. This observation is corroborated by semi-classical calculations using the Robert-Bonamy formalism. A slight negative $J$ dependence, already observed in other ozone vibrational bands, is predicted. Systematic use of our technique could be very useful to support this hypothesis and to make up for the lack of shift parameters for ozone $ u_3$ transitions in molecular spectral databases. A subsequent stabilization of the QCL onto an optical frequency comb will open up possibilities to perform metrological measurements of Doppler-free molecular lines.
100 - Franck Bielsa 2007
We report on higly accurate absolute frequency measurement against a femtosecond frequency comb of 6 saturated absorption lines of formic acid (HCOOH) with an accuracy of 1 kHz. We also report the frequency measurement of 17 other lines with an accur acy of 2 kHz. Those lines are in quasi coincidence with the 9R(36) to 9R(42) CO$_2$ laser emission lines and are probed either by a CO$_2$ or a widely tunable quantum cascade laser phase locked to a master CO$_2$ laser. The relative stability of two HCOOH stabilized lasers is characterized by a relative Allan deviation of 4.5 10$^{-12}$ $tau^{-1/2}$. They give suitable frequency references for H$_2^+$ Doppler free two-photon spectroscopy.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chi ps enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا