ترغب بنشر مسار تعليمي؟ اضغط هنا

The supersoft X-ray source in V5116 Sgr I. The high resolution spectra

111   0   0.0 ( 0 )
 نشر من قبل Gloria Sala
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical novae occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. V5116 Sgr was observed as a bright and variable supersoft X-ray source by XMM-Newton 610~days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km/s, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova.

قيم البحث

اقرأ أيضاً

V5116 Sgr (Nova Sgr 2005 No. 2), discovered on 2005 July 4, was observed with XMM-Newton in March 2007, 20 months after the optical outburst. The X-ray spectrum shows that the nova had evolved to a pure supersoft X-ray source, with no significant emi ssion at energies above 1 keV. The X-ray light-curve shows abrupt decreases and increases of the flux by a factor ~8. It is consistent with a periodicity of 2.97 h, the orbital period suggested by Dobrotka et al. (2007), although the observation lasted just a little more than a whole period. We estimate the distance to V5116 Sgr to be 11+/-3 kpc. A simple blackbody model does not fit correctly the EPIC spectra, with reduced chi^2>4. In contrast, ONe rich white dwarf atmosphere models provide a good fit, with nH=1.3(+/-0.1)e21 cm^-2, T=6.1(+/-0.1)e5 K, and L=3.9(+/-0.8)e37(D/10kpc)^2 erg/s (during the high-flux periods). This is consistent with residual hydrogen burning in the white dwarf envelope. The white dwarf atmosphere temperature is the same both in the low and the high flux periods, ruling out an intrinsic variation of the X-ray source as the origin of the flux changes. We speculate that the X-ray light-curve may result from a partial coverage by an asymmetric accretion disk in a high inclination system.
165 - U. Peretz , M. Orio , E. Behar 2016
Two observations of V959 Mon, done using the Chandra X-ray gratings during the late outburst phases (2012 September and December), offer extraordinary insight into the physics and chemistry of this Galactic ONe nova. the X-ray flux was 1.7 x 10(-11) erg/cm(2)/s and 8.6 x 10(-12) erg/cm(2)/s, respectively at the two epochs. The first result, coupled with electron density diagnostics and compared with published optical and ultraviolet observations, indicates that most likely in 2012 September the X-rays originate from a very small fraction of the ejecta, concentrated in very dense clumps. We obtained a fairly good fit to the September spectrum with a model of plasma in collisional ionization equilibrium (CIE) with two components; one at a temperature of 0.78 keV, blueshifted by 710-930 km/s, the other at a temperature of 4.5 keV, mostly contributing to the high-energy continuum. However, we cannot rule out a range of plasma temperatures between these two extremes. In December, the central white dwarf (WD) became visible in X-rays. We estimate an effective temperature of about 680,000 K, consistent with a WD mass ~1.1 M(sol). The WD flux is modulated with the orbital period, indicating high inclination, and two quasi-periodic modulations with hour timescales were also observed. No hot plasma component with temperature above 0.5 keV was observed in December, and the blue-shifted component cooled to kT~0.45 keV. Additionally, new emission lines due to a much cooler plasma appeared, which were not observed two months earlier. We estimate abundances and yields of elements in the nova wind that cannot be measured in the optical spectra and confirm the high Ne abundance previously derived for this nova. We also find high abundance of Al, 230 times the solar value, consistently with the prediction that ONe novae contribute to at least 1/3rd of the Galactic yield of Al(26).
In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center ( GC) X-ray Visionary Program obtained approximately 3 Ms (one month) of Chandra HETG data, offering the only opportunity to examine the quiescent X-ray emission of Sgr A* with high resolution spectroscopy. Utilizing custom background regions and filters for removing overlapping point sources, this work provides the first ever look at stacked HETG spectra of Sgr A*. We model the background datasets with a cubic spline and fit the unbinned Sgr A* spectra with a simple parametric model of a power law plus Gaussian lines under the effects of interstellar extinction. We detect a strong 6.7 keV iron emission line in the HEG spectra and a 3.1 keV emission line in the MEG spectra. In all cases, the line centroids and equivalent widths are consistent with those measured from low-resolution CCD spectra. An examination of the unbinned, stacked HEG+/-1 spectrum reveals fine structure in the iron line complex. In addition to resolving the resonant and forbidden lines from He-like iron, there are apparent emission features arising with higher statistical significance at lower energy, potentially associated with FeXX-XXIV ions in a ~1 keV plasma arising near the Bondi radius of Sgr A*. With this work, we release the cleaned and stacked Sgr A* and background HETG spectra to the public as a special legacy dataset.
108 - T. E. Woods , M. Gilfanov 2015
Accreting, steadily nuclear-burning white dwarfs are associated with so-called close-binary supersoft X-ray sources (SSSs), observed to have temperatures of a few$times 10^{5}$K and luminosities on the order of $10^{38}$erg/s. These and other types o f SSSs are expected to be capable of ionizing their surrounding circumstellar medium, however, to date only one such nebula was detected in the Large Magellanic Cloud (of its 6 known close-binary SSSs), surrounding the accreting, nuclear-burning WD CAL 83. This has led to the conclusion that most SSSs cannot have been both luminous ($gtrsim 10^{37}$erg/s) and hot ($gtrsim$ few $times 10^{4}$K) for the majority of their past accretion history, unless the density of the ISM surrounding most sources is much less than that inferred for the CAL 83 nebula (4--10$rm{cm}^{-3}$). Here we demonstrate that most SSSs must lie in much lower density media than CAL 83. Past efforts to detect such nebulae have not accounted for the structure of the ISM in star-forming galaxies and, in particular, for the fact that most of the volume is occupied by low density warm & hot ISM. CAL 83 appears to lie in a region of ISM which is at least $sim 40$-fold overdense. We compute the probability of such an event to be $approx 18%$, in good agreement with observed statistics. We provide a revised model for the typical SSS nebula, and outline the requirements of a survey of the Magellanic clouds which could detect the majority of such objects. We then briefly discuss some of the possible implications, should there prove to be a large population of previously undiscovered ionizing sources.
We report on observations of a luminous supersoft X-ray source (SSS) in M31, r1-25, that has exhibited spectral changes to harder X-ray states. We document these spectral changes. In addition, we show that they have important implications for modelin g the source. Quasisoft states in a source that has been observed as an SSS represent a newly- discovered phenomenon. We show how such state changers could prove to be examples of unusual black hole or neutron star accretors. Future observations of this and other state changers can provide the information needed to determine the nature(s) of these intriguing new sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا