ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-ordering of charge density waves traced by ultrafast low-energy electron diffraction

389   0   0.0 ( 0 )
 نشر من قبل Simon Vogelgesang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Vogelgesang




اسأل ChatGPT حول البحث

We introduce ultrafast low-energy electron diffraction (ULEED) in backscattering for the study of structural dynamics at surfaces. Using a tip-based source of ultrashort electron pulses, we investigate the optically-driven transition between charge-density wave phases at the surface of 1T-TaS2. The large transfer width of the instrument allows us to employ spot-profile analysis, resolving the phase-ordering kinetics in the nascent incommensurate charge-density wave phase. We observe a coarsening that follows a power-law scaling of the correlation length, driven by the annihilation of dislocation-type topological defects of the charge-ordered lattice. Our work opens up the study of a wide class of structural transitions and ordering phenomena at surfaces and in low-dimensional systems.

قيم البحث

اقرأ أيضاً

We study the non-equilibrium structural dynamics of the incommensurate and nearly-commensurate charge-density wave phases in 1T-TaS$_2$. Employing ultrafast low-energy electron diffraction (ULEED) with 1 ps temporal resolution, we investigate the ult rafast quench and recovery of the CDW-coupled periodic lattice distortion. Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks as well as the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 picoseconds, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a nonlinear generation of phase fluctuations.
The dynamics of the photoinduced commensurate to incommensurate charge density wave (CDW) phase transition in 4Hb-TaSe2 are investigated by femtosecond electron diffraction. In the perturbative regime the CDW reforms on a 150 ps timescale, which is t wo orders of magnitude slower than in other transition-metal dichalcogenides. We attribute this to a weak coupling between the CDW carrying T-layers and thus demonstrate the importance of three-dimensionality for the existence of CDWs. With increasing optical excitation the phase transition is achieved showing a second order character in contrast to the first order behavior in thermal equilibrium.
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Gottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.
An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic {it grating} (e.g., a standing wave f ormed by two counter-propagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens new vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl attice peaks as function of temperature is performed for both systems as the CDW transition temperature T_CDW is suppressed to zero by an non-thermal control parameter. Our results indicate an interesting crossover of the classical thermal-driven CDW order parameter critical exponent from a three-dimensional universality class to a mean-field tendency, as T_CDW vanishes. Such behavior might be associated with presence of quantum fluctuations which influences the classical second-order phase transition, strongly suggesting the presence of a quantum critical point (QCP) at T_CDW = 0. This also provides experimental evidence that the effective dimensionality exceeds its upper critical dimension due to a quantum phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا