ﻻ يوجد ملخص باللغة العربية
Two qubits form a quantum four-level system. The golden-rule based transition rates between these states are determined by the coupling of the qubits to noise sources. We demonstrate that depending on whether the noise acting on the two qubits is correlated or not, these transitions are governed by different selection rules. In particular, we find that for fully correlated or anticorrelated noise, there is a protected state, and the dynamics of the system depends then on its initialization. For nearly (anti)correlated noise, there is a long time scale determining the temporal evolution of the qubits. We apply our results to a quantum Otto refrigerator based on two qubits coupled to hot and cold baths. Even in the case when the two qubits do not interact with each other, the cooling power of the refrigerator does not scale with the number ($=2$ here) of the qubits when there is strong correlation of noise acting on them.
Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, on the oth
We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-linearly coupled resonators. Considering ZZ interaction be
Quantum metrology offers an enhanced performance in experiments such as gravitational wave-detection, magnetometry or atomic clocks frequency calibration. The enhancement, however, requires a delicate tuning of relevant quantum features such as entan
We consider fault-tolerant quantum computation in the context where there are no fresh ancilla qubits available during the computation, and where the noise is due to a general quantum channel. We show that there are three classes of noisy channels: I
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state a